Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Eigenvalues in the Undamped Case

When $ g=1$, the eigenvalues reduce to

$\displaystyle {\lambda_i}= c\pm j\sqrt{1-c^2}
$

Assuming $ \left\vert c\right\vert<1$, the eigenvalues can be expressed as

$\displaystyle {\lambda_i}= c\pm j\sqrt{1-c^2} = \cos(\theta) \pm j\sin(\theta) = e^{\pm j\theta} \protect$ (O.17)

where $ \theta=\omega T$ denotes the angular advance per sample of the oscillator. Since $ c\in(-1,1)$ corresponds to the range $ \theta\in(-\pi,\pi)$, we see that $ c$ in this range can produce oscillation at any digital frequency.

For $ \left\vert c\right\vert>1$, the eigenvalues are real, corresponding to exponential growth and/or decay. (The values $ c=\pm 1$ were excluded above in deriving Eq. (O.17).)

In summary, the coefficient $ c$ in the digital waveguide oscillator ($ g=1$) and the frequency of sinusoidal oscillation $ \omega $ is simply

$\displaystyle \fbox{$\displaystyle c= \cos(\omega T)$}.
$


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]