Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Digital Sinusoid Generators

In [158], three techniques were examined for generating sinusoids digitally by means of recursive algorithms.O.1 The recursions can be interpreted as implementations of second-order digital resonators in which the damping is set to zero. The three methods considered were (1) the 2D rotation (2DR), or complex multiply (also called the ``coupled form''), (2) the modified coupled form (MCF), or ``magic circle'' algorithm,O.2which is similar to (1) but with better numerical behavior, and (3) the direct-form, second-order, digital resonator (DFR) with its poles set to the unit circle.

These three recursions may be defined as follows:

\begin{displaymath}
\begin{array}{crcll}
(1) & x_1(n) &=& c_nx_1(n-1) + s_nx_2(n...
..._2(n-1) & \\
& x_2(n) &=& x_1(n-1) & \mbox{(DFR)}
\end{array}\end{displaymath}

where $ c_n\isdef \cos(2\pi f_n T)$, $ s_n\isdef \sin(2\pi f_n T)$, $ f_n$ is the instantaneous frequency of oscillation (Hz) at time sample $ n$, and $ T$ is the sampling period in seconds. The magic circle parameter is $ \epsilon=2\sin(\pi f_n T)$.

The digital waveguide oscillator appears to have the best overall properties yet seen for VLSI implementation. This structure, introduced in [432], may be derived from the theory of digital waveguides (see Appendix G, Appendix H, and [409,436]). Any second-order digital filter structure can be used as a starting point for developing a corresponding sinusoidal signal generator, so in this case we begin with the second-order waveguide filter.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]