Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Computational Complexity

The DW model is more efficient in one dimension because it can make use of delay lines to obtain an $ {\cal O}(1)$ computation per time sample [414], whereas the FDTD scheme is $ {\cal O}(M)$ per sample ($ M$ being the number of spatial samples along the string). There is apparently no known way to achieve $ {\cal O}(1)$ complexity for the FDTD scheme. In higher dimensions, i.e., when simulating membranes and volumes, the delay-line advantage disappears, and the FDTD scheme has the lower operation count (and memory storage requirements).


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]