Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Extracting Physical Quantities

Since we are using a force-wave simulation, the state variable $ x(n)$ (delay element output) is in units of physical force (newtons). Specifically, $ x(n) = f^{{+}}(n-1)$ . (The physical force is, of course, 0, while its traveling-wave components are not 0 unless the mass is at rest.) Using the fundamental relations relating traveling force and velocity waves

\begin{eqnarray*}
f^{{+}}(n) &\isdef & \quad\! R_0 v^{+}(n)\\
f^{{-}}(n) &\isdef & - R_0 v^{-}(n)\\
\end{eqnarray*}

where $ R_0 = m $ here, it is easy to convert the state variable $ x(n)$ to other physical units, as we now demonstrate.

The velocity of the mass, for example, is given by

$\displaystyle v(n) = v^{+}(n) + v^{-}(n) =
\frac{f^{{+}}(n)}{m} - \frac{f^{{-}}(n)}{m} = \frac{2f^{{+}}(n)}{m} = \frac{2}{m}x(n)
$

Thus, the state variable $ x(n)$ can be scaled by $ 2/m$ to ``read out'' the mass velocity.

The kinetic energy of the mass is given by

$\displaystyle {\cal E}_m = \frac{1}{2}mv^2(n) = \frac{2}{m}x^2(n)
$

I.e., the square of the state variable $ x(n)$ can be scaled by $ 2/m$ to produce the physical kinetic energy associated with the mass.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Physical Audio Signal Processing'', by Julius O. Smith III, W3K Publishing, 2010, ISBN 978-0-9745607-2-4.
Copyright © 2014-10-15 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA