The software listing below is in the SAIL programming language (generally a superset of ALGOL). Since procedures are defined before they are used, the listing starts out defining basic utilities, progressing to higher levels until finally the top level is reached. As a result, it is usually easier start read the top level procedure at the end first, and then work backwards to fill in the details.
The SAIL keyboard had various non-standard characters which are spelled out here using TeX equivalents such as &alpha#alpha; and &beta#beta;.
COMMENT Track instantaneous amplitudes and frequencies of multiple sinusoids; COMMENT Side-result: FFT-based filtering and/or inharmonic additive synthesis; COMMENT Completed in the summer of 1985 by Julius O. Smith III BEGIN "PARSHL" REQUIRE "{}<>" DELIMITERS; DEFINE #="comment",CrLf="'15&'12",tab={""&'11},Sam16="4",Cr="'15", ALT={'175&""},Thru={step 1 until}; REQUIRE "JOSLIB.REQ[LIB,JOS]" SOURCE!FILE; REQUIRE "REQUIRING UDP2:SIGLIB.REL[SIG,MUS] LIBRARY" MESSAGE; REQUIRE "UDP2:SIGLIB.REL[SIG,MUS]" LIBRARY; REQUIRE "JAMLIB.REL[SUB,SYS]" LIBRARY; REQUIRE "TRMTYP.SAI[LIB,JOS]" SOURCE!FILE; REQUIRE "DISPLA.REQ[LIB,JOS]" SOURCE!FILE; EXTERNAL PROCEDURE TRPINI(INTEGER CODE); # Enable floating point exception code; EXTERNAL PROCEDURE SUPCT; # Disable \alpha-I,\alpha-R,\alpha-T,\alpha-L etc; REQUIRE "RECORD.REQ[LIB,JOS]" SOURCE!FILE; # REQUIRE "MYIO.REQ[LIB,JOS]" SOURCE!FILE; COMMENT Declare File IO stuff; REQUIRE "FLTIO.REQ[LIB,JOS]" SOURCE!FILE; COMMENT Declare GetFlt; EXTERNAL BOOLEAN PROCEDURE AinInt(REFERENCE INTEGER Val; STRING Name); EXTERNAL BOOLEAN PROCEDURE AinReal(REFERENCE REAL Val; STRING Name); EXTERNAL STRING PROCEDURE Cvfs(REAL Val); EXTERNAL SIMPLE BOOLEAN PROCEDURE FNparse( STRING Arg; REFERENCE STRING Device; REFERENCE STRING Filename); EXTERNAL STRING PROCEDURE DEV(STRING Name); COMMENT Return DEVICE part of filename; EXTERNAL STRING PROCEDURE NAME(STRING Name); COMMENT Return NAME part of filename; EXTERNAL STRING PROCEDURE EXT(STRING Name); COMMENT Return extension part of filename; EXTERNAL STRING PROCEDURE PPN(STRING Name); COMMENT Return PPN part of filename; COMMENT SOUND IO DECLARATIONS; REQUIRE "SYS:DEFAUL.HDR" SOURCE!FILE; # REQUIRE "RHEAD.REL[SYS,MUS]" LOAD!MODULE; # REQUIRE "WHEAD.REL[SYS,MUS]" LOAD!MODULE; EXTERNAL BOOLEAN PROCEDURE SANDI( INTEGER Chan, StSamp, Nsamps; REFERENCE REAL ARRAY X; INTEGER FilSamps, Headed, FilPak, Xpack(-1)); EXTERNAL BOOLEAN PROCEDURE SANDO( INTEGER Chan, StSamp, Nsamps; REFERENCE REAL ARRAY X; REFERENCE INTEGER ARRAY Hist; REFERENCE INTEGER FilSamps; INTEGER Headed, FilPak, Xpack(-1)); # ReadH (rp, hdbuf, Fail, true if don't want printout); EXTERNAL PROCEDURE ReadH ( RECORD!POINTER (File) Rp; REFERENCE REAL ARRAY Hdbuf; REFERENCE INTEGER FAIL; BOOLEAN Silence (FALSE)); # WriteH (head, clock, pack, #chans, #ticks, maxamp, cstr); EXTERNAL PROCEDURE WriteH ( REFERENCE REAL ARRAY Head; REAL Clock; INTEGER Pack, #chans, #ticks; REAL Maxamp; STRING Cstr ); INTEGER ARRAY OutH,AmpH,FrqH[0:128]; REAL ARRAY Head[1:128]; INTEGER Nread,Brk; REAL Maxamp; BOOLEAN FAIL,Eof; STRING Ifile,Idev,Ofile,Odev; STRING AmpFile,AmpDev,FrqFile,FrqDev,Tstr; RECORD!POINTER (File) InFptr, OutFptr; RECORD!POINTER (File) AmpFptr, FrqFptr; DEFINE InF(x) = {File:x[InFptr]}, OutF(x) = {File:x[OutFptr]}; DEFINE AmpF(x) = {File:x[AmpFptr]}, FrqF(x) = {File:x[FrqFptr]}; COMMENT Filter input; # REQUIRE "JOSLIB.REQ[LIB,JOS]" SOURCE!FILE; # REQUIRE "RECORD.REQ[LIB,JOS]" SOURCE!FILE; # REQUIRE "FLTIO.REQ[LIB,JOS]" SOURCE!FILE; COMMENT Declare GetFlt; DEFINE MaxCoeffs = "8192"; COMMENT Maximum number of filter coefficients; STRING Ffile; INTEGER Ni,No; REAL ARRAY Ic,Oc[1:MaxCoeffs]; INTEGER Nfft,Nspec,Nh,Nx,Nhop,Ndec,i,Nhops; INTERNAL INTEGER Trace; DEFINE ShowSpectra="(Trace LAND 1)"; DEFINE TDpyFFA = " IF ShowSpectra THEN DpyFFA "; DEFINE ShowTime="(Trace LAND 2)"; DEFINE TDpyEd = " IF ShowTime THEN DpyEd "; DEFINE ShowPeakFinder="(Trace LAND 4)"; DEFINE Debug1="(Trace LAND 8)", Debug2="(Trace LAND 16)", Debug3="(Trace LAND 32)"; BOOLEAN HaveOfile,HaveIfile,HaveFfile,HavePack; STRING TmpStr; EXTERNAL INTEGER !SKIP!; IFC FALSE THENC # SAIL Esc-I interrupt facility; SIMPLE PROCEDURE EscI; # This is called upon <esc>I interrupt; START!CODE "EscI" TLZE '10,'400000; # If sign bit is on; MOVN '10,'10; # Convert sign-magnitude to 2' comp; MOVEM '10, Trace; # Save Ac 10; CALLI 0, '400024; # DISMIS (return to user level); END "EscI"; PROCEDURE Int!init; BEGIN EXTERNAL INTEGER JOBAPR; # JOB DATA AREA user interrupt routine pointer; JOBAPR <- LOCATION(EscI); ENABLE(15); # Enable user interrupt handling; Trace <- 0; END; COMMENT REQUIRE Int!Init INITIALIZATION; COMMENT rmoved by BIL because he thinks this is extremely dangerous -- you are depending on getting only esc-i interrupts and nothing else. The SAIL runtime world that tries to handle arithmetic exceptions (for example) depends on JOBAPR pointing to some procedure that can handle such interrupts (UDP2:TRIGS[NEW,SAI]/4P and UDP2:NWORLD[NEW,SAI]/31,32P); ELSEC IFC NOT DECLARATION(GOGTAB) THENC EXTERNAL INTEGER ARRAY GOGTAB[0:'300]; ENDC SIMPLE PROCEDURE Esci; Trace <- GOGTAB['200]; PROCEDURE Int!Init; BEGIN ENABLE(15); INTMAP(15,Esci,0); Trace <- 0; END; REQUIRE Int!Init INITIALIZATION; ENDC # Global declarations; BOOLEAN DoFlt,DoSynth,DoOut,SwapOut; # Flags for type of function wanted; REAL MinSep,Thresh,Hyst,DFmax1,DFmax2,DAmax,SigScl,Fc1,Fc2,Fs,DBscl; INTEGER MaxLins,MaxOscs,Nframes,Npartials,Frame,MinWid; BOOLEAN Quiet,InstantRise; COMMENT DerivedName - Generate name from root name and code string; STRING PROCEDURE DerivedName(STRING GivenName, CodeString); BEGIN "DerivedName" INTEGER i,j,ln,lc; STRING Gname,DevStr; STRING RootName; # REQUIRE "JOSLIB.REQ[LIB,JOS]" SOURCE!FILE; EXTERNAL STRING PROCEDURE DEV(STRING Name); COMMENT Return DEVICE part of filename; EXTERNAL STRING PROCEDURE NAME(STRING Name); COMMENT Return NAME part of filename; EXTERNAL STRING PROCEDURE EXT(STRING Name); COMMENT Return extension part of filename; EXTERNAL STRING PROCEDURE PPN(STRING Name); COMMENT Return PPN part of filename; Gname <- NAME(GivenName); ln <- LENGTH(Gname); lc <- LENGTH(CodeString); IF lc+ln LEQ 6 THEN RootName <- Gname&CodeString ELSE RootName <- Gname[1 to 6-lc]&CodeString; IF EQU(RootName,Gname) THEN BEGIN # Gak! Must generate a new name!; PRINT(" DerivedName got a name collision",CrLf); IF ln>1 THEN RootName <- Gname[1 to 6-lc-1]&CodeString&"2" ELSE RootName <- Gname[1 to 6-lc]&CodeString[1 to lc-1]&"2"; IF EQU(RootName,Gname) THEN RootName <- RootName[1 to 5]&"3"; END; DevStr <- Dev(GivenName); IF DevStr NEQ NULL THEN DevStr <- DevStr&":"; RETURN(DevStr&RootName&Ext(GivenName)&Ppn(GivenName)); END "DerivedName"; COMMENT Fprint - Print documentation from DSK; # Put this in JOSLIB; PROCEDURE Fprint(STRING Fname); COMMENT Print contents of file in fname; BEGIN STRING Help,Ttystr; INTEGER Fchan,Brk,Eof,Bt; BOOLEAN FAIL; DEFINE FF={('14&"")}; OPEN(Fchan <- GETCHAN,"DSK",0,2,0,2000,Brk,Eof); COMMENT Ascii input; LOOKUP(Fchan,Fname,FAIL); IF FAIL THEN USERERR(0,1," Can't find HELP file "&Fname); IF FAIL THEN RETURN; SETBREAK(Bt <- GETBREAK,FF,NULL,"sin"); DO BEGIN "pages" Help <- INPUT(Fchan,Bt); IF NOT EQU(Help[1 FOR 7],"COMMENT") THEN BEGIN MyOutDpy(Help,-3,-1); MyOutDpy ("Type RETURN to continue - ALT to return to command level",31,-1); MyOutDpy (Fname,33,-1); Ttystr <- INCHWL; Break!N; IF Ttystr="H" OR Ttystr = "?" THEN MyOutDpy(" This IS help!!",32,-1); IF !skip!="H" OR !skip! = "?" THEN MyOutDpy(" This IS help!!",32,-1); IF !skip! = ALT THEN BEGIN PRINT(CrLf); DONE "pages"; END; END; END "pages" UNTIL Eof; Relbreak(Bt); RELEASE(Fchan); END; COMMENT Help - Command Summaries; RECURSIVE PROCEDURE HELP(STRING Topic(NULL)); BEGIN "help" Break!N; IF EQU(Topic,"?") THEN BEGIN Fprint("PARSHL.JOS[MUS,DOC]"); PRINT(CrLf,CrLf," Type \alpha-? for command summary",CrLf); # PRINT(" Type <command!letter>\alpha-? for individual command description",CrLf); PRINT(" Type ?\alpha-? or ?,?<RETURN> for full documentation",CrLf,CrLf); RETURN; END; IF EQU(Topic,"TopLevel") THEN MyOutDpy(" Outer Level Command Summary [s> => string, [n> => integer, [d> => real number, \alpha- => CONTROL, and \beta- => META ALT - Exit PARSHL. ?\alpha-? - Print complete documentation. (Also ?,?[CR> does this.) [n>\alpha-W - Analysis Window (1=rect,2=triang,3:5=Hamming,6=Kaiser,7=Cheb) [n>\alpha-T - FFT length (must be a power of 2). [n>\alpha-D - Number of samples of input signal per FFT frame. [n>\alpha-H - Number of samples of input signal to advance between FFT's. [n>\alpha-L - Length of filter impulse response (if known). [n>\alpha-C - Decimation factor (1 => no decimation, 2 => every other sample, etc.) [s>\alpha-I - Input sound file. [s>\alpha-O - Output sound file. [n>\alpha-P - Output sound file packing mode. (\alpha-P with no arg explains codes.) [s>\alpha-F - Input filter file. ; - Comment. [ESC>[n>I codes: (n can be any sum of the following): [n> display(s) enabled --- ------------------ 0 none (type [ESC>I to turn off all running displays) 1 time buffers ([ESC>1I) 2 spectral buffers ([ESC>2I) 4 peak-finder 8 debug level 1 16 debug level 2 32 debug level 3 ------------------------------------------------------------------------ ",-3,-1); IF EQU(Topic,"SubLevel") THEN MyOutDpy(" Inner Level Command Summary [s] => string, [n] => integer, [d] => real number, \alpha- => CONTROL, and \beta- => META ALT - Exit to Outer level. ?\alpha-? - Print complete documentation. (Also ?,?[CR] does this.) [d]\alpha-M - Minimum spacing between partials in Hz [n]\alpha-N - Maximum number of partials to track [n]\alpha-O - Maximum number of oscillators to use [d]\alpha-F - First (lowest) partial frequency allowed (Hz) [d]\alpha-L - Last (highest) partial frequency allowed (Hz) [d]\alpha-T - Peak detection threshold in dB [d]\alpha-H - Spectral wiggle tolerance in dB [d]\alpha-D - Maximum allowed frequency deviation per frame in Hz at LOW frequency [d]\alpha-U - Maximum allowed frequency deviation per frame in Hz at HIGH frequency [n]\alpha-B - Buffer display code. If negative, all time buffers are displayed. \alpha-S - Show spectra of filter input and output on each FFT hop. (\beta-S disables.) ; - Comment. ------------------------------------------------------------------------ ",-3,-1); END "help"; COMMENT DpyFFA - Display interleaved dB spectra as computed by FFA in SIGLIB; PROCEDURE DpyFFA(REAL ARRAY S; INTEGER Nfft; STRING T; REAL Fs(1)); COMMENT For displaying interleaved dB spectra as computed by FFA in SIGLIB; BEGIN "DpyFFA" INTEGER i,Nspec; REAL ARRAY Spec[1:(Nfft DIV 2)+1]; Nspec <- (Nfft DIV 2) + 1; FOR i <- 1 STEP 1 UNTIL Nspec DO Spec[i] <- (10.0/LOG(10.0))*LOG( (S[2*i-1]^2+S[2*i]^2) MAX 1.0@-35); DpyEd(Spec,Nspec,T,"MAGNITUDE (DB)",0,Fs/2); END "DpyFFA"; COMMENT Qinterp - Quadratic interpolation; INTERNAL SIMPLE REAL PROCEDURE Qinterp(REAL Ym1,Y0,Yp1; BOOLEAN InteriorX(TRUE)) ; COMMENT Fit a parabola Y[X] = A*X^2+B, through the three equally spaced Y-values Ym1 = Y[-1], Y0 = Y[0], and Yp1=Y[1], and return the X-value where the extremum is attained. For example, if -1 is returned, then Y[-1] is the point of zero slope in the parabola through the three points. If InteriorX is TRUE then if the extremum lies outside the interval [-1,1], a warning is printed and the returned value is clipped to lie at either 1 or -1 as appropriate. ; BEGIN "Qinterp" REAL X; X <- (Yp1 - Ym1)/(2*(2*Y0 - Yp1 - Ym1)); IF InteriorX AND (ABS(X)>1) THEN PRINT(" Qinterp: Clipping analytic extremum to ", X <- (IF X>0 THEN 1 ELSE -1),CrLf); IF Debug3 THEN PRINT("Qinterp: Given Y's ",Ym1," ",Y0," ",Yp1, ", extremum is at X = ",X,CRLF); RETURN(X); END "Qinterp"; COMMENT FindPeaks - Generic peak finder; IFC NOT DECLARATION(IntNoSet) THENC DEFINE IntNoSet={(1 LSH 35)}; IFC NOT DECLARATION(RealNoSet) THENC DEFINE RealNoSet={(-1.0@35)}; INTEGER PROCEDURE FindPeaks(REAL ARRAY X,Peaks,PeakLocs; REAL Thresh(RealNoSet),Hyst(RealNoSet); INTEGER MaxPeaks(IntNoSet),MinWidth(IntNoSet),BlankWidth(IntNoSet), I1(IntNoSet),I2(IntNoSet)); COMMENT Find amplitudes and indices of all peaks in X = array of values to be searched for peaks. (It is overwritten.) Peaks[1:MaxPeaks] = peak amplitudes. PeakLocs[1:MaxPeaks] = peak indices. Thresh = Threshold below which no peaks are to be sought Hyst = Wiggles less than Hyst in magnitude are ignored. MaxPeaks = Maximum number of peaks to be found (starting w largest) MinWidth = Minimum peak width in indices, after blanking. Narrower peaks are removed and ignored. BlankWidth = Minimum blanking interval in indeces. If = IntNoSet, then blank to nearest local minimum to within Hyst interval. Blanking is done before width is measured for efficiency reasons (would rather measure width first). i1,i2 = index boundaries for the search within X. The return value is the number of peaks actually found. ; BEGIN "FindPeaks" INTEGER i,j,Npeaks,NdxReach,Owid,Odig,Peak,Poff,PLoff,M1,M2,Nfound,Lb,Ub; REAL Xmax,Xmin; GETFORMAT(Owid,Odig); SETFORMAT(0,5); NdxReach <- (IF (BlankWidth NEQ IntNoSet) THEN (BlankWidth-1)/2 MAX 1 ELSE 0); Poff <- ARRINFO(Peaks,1)-1; PLoff <- ARRINFO(PeakLocs,1)-1; Npeaks <- (IF MaxPeaks NEQ IntNoSet THEN MaxPeaks ELSE ARRINFO(Peaks,2)-Poff); Npeaks <- Npeaks MIN (ARRINFO(Peaks,2)-Poff) MIN (ARRINFO(PeakLocs,2)-PLoff); Lb <- ARRINFO(X,1); Ub <- ARRINFO(X,2); IF I2=IntNoSet THEN I2 <- ARRINFO(X,2); IF I1=IntNoSet THEN I1 <- ARRINFO(X,1); I1 <- (Lb MAX I1 MIN Ub); I2 <- (I1 MAX I2 MIN Ub); ArrMin(Xmin,X,I1,I2); ArrMax(Xmax,X,I1,I2); IF Thresh=RealNoSet THEN Thresh <- Xmin; IF Hyst=RealNoSet THEN Hyst <- (Xmax-Xmin)/100; M1 <- M2 <- 0; COMMENT [m1,m2] = index interval of last peak; Nfound <- 0; FOR Peak <- 1 STEP 1 UNTIL Npeaks DO BEGIN "fp" INTEGER MaxLoc,TmpI; REAL MaxVal,ClobVal,TmpR; IF M1=I1 AND M2=I2 THEN DONE "fp"; MaxLoc <- ArrMax(MaxVal,X,I1,I2); IF MaxVal<Thresh THEN DONE "fp"; Nfound <- Nfound + 1; PeakLocs[Nfound+PLoff] <- MaxLoc + Qinterp(X[(MaxLoc-1) MAX I1],MaxVal,X[(MaxLoc+1) MIN I2]); IF MaxLoc=I1 AND Debug1 THEN PRINT("*** Peak is at right of search interval for peak ",Nfound," ***",CrLf); IF MaxLoc=I2 AND Debug1 THEN PRINT("*** Peak is at left of search interval for peak ",Nfound," ***",CrLf); Peaks[Nfound+Poff] <- MaxVal; COMMENT Now slice off peak so we don't find it again; M1 <- (MaxLoc-NdxReach) MAX I1; M2 <- (MaxLoc+NdxReach) MIN I2; ArrMin(ClobVal,X,M1,M2); TmpR <- X[M1]; WHILE M1>I1 AND TmpR+Hyst GEQ X[M1-1] DO BEGIN TmpR <- TmpR MIN X[M1-1]; M1 <- M1-1 END; ClobVal <- ClobVal MIN TmpR; TmpR <- X[M2]; WHILE M2<I2 AND TmpR+Hyst GEQ X[M2+1] DO BEGIN TmpR <- TmpR MIN X[M2+1]; M2 <- M2+1 END; ClobVal <- ClobVal MIN TmpR; FOR i <- M1 STEP 1 UNTIL M2 DO X[i] <- ClobVal; IF (M2-M1+1 < MinWidth) OR MaxLoc=I1 OR MaxLoc=I2 # JOS/10/25/85; THEN BEGIN "Throw it back" Nfound <- Nfound-1; CONTINUE "fp"; END "Throw it back"; IF ShowPeakFinder THEN DpyEd(X,I2-ARRINFO(X,1)+1,"X remains after peak "& CVS(Nfound)&" at i="&CVS(MaxLoc)); END "fp"; SETFORMAT(Owid,Odig); RETURN(Nfound); END "FindPeaks"; COMMENT FindPartials - Find all significant spectral lines for current frame; PROCEDURE FindPartials(REFERENCE INTEGER Npartials; REAL ARRAY XmagDB,LinAmp,LinFrq; REAL Fs,MinSep,Thresh,Hyst; INTEGER Nfft,Frame,MinWid; REAL Fc1(RealNoSet),Fc2(RealNoSet)); COMMENT Find amplitudes (dB) and frequencies (Hz) of all partials in XmagDB. Npartials = the maximum number of partials to find. It is set to the actual number of partials found on return. XmagDB[1:Nfft/2+1] = DB magnitude spectrum LinAmp[1:Nharms,1:Nframes] = Partial amplitudes LinFrq[1:Nharms,1:Nframes] = Partial frequencies Fs = sampling rate (Hz) MinSep = minimum line spacing (Hz) Thresh,Hyst are args to FindPeaks Nfft = Size of FFT used in computing XmagDB Frame = current time frame number MinWid = minimum acceptable peak width in FFT bins. Fc1,Fc2 = lower and upper frequency bounds in Hz. No partials will be allowed outside this interval. ; BEGIN "FindPartials" REQUIRE "HACKS.REL[SUB,SYS]" LIBRARY; EXTERNAL SIMPLE PROCEDURE QISort(REAL ARRAY A,Data; INTEGER LB,UB); INTEGER i,j,Nspec,BinInt,BinReach,Owid,Odig,Partial,MinWid; REAL ARRAY Xsave[1:Nspec <- Nfft/2+1]; GETFORMAT(Owid,Odig); SETFORMAT(0,7); BinInt <- (MinSep/Fs)*Nfft+.5; # Blanking interval for spectral peak (in bins); IF Frame=1 THEN PRINT(CrLf," Blanking interval is ",BinInt," bins",CrLf); ARRTRAN(Xsave,XmagDB); # Save input array; Npartials <- FindPeaks(XmagDB,LinAmp,LinFrq,Thresh,Hyst, Npartials,MinWid,BinInt,((1+Nfft*Fc1/Fs) MAX 1),((1+Nfft*Fc2/Fs) MIN Nspec)); ARRTRAN(XmagDB,Xsave); # Sort for ascending frequency (for convenience only); IF Npartials>0 THEN QIsort(LinFrq,LinAmp,1,Npartials); IF Debug2 THEN PRINT(CrLf); FOR Partial <- 1 STEP 1 UNTIL Npartials DO BEGIN "fp" LinFrq[Partial] <- Fs*(LinFrq[Partial]-1)/Nfft; IF Debug2 GEQ Partial THEN PRINT("Frame=",Frame," Amp(dB)=",LinAmp[Partial], " Freq(Hz)=",LinFrq[Partial],"=",Partial,"*",MinSep,"*", LinFrq[Partial]/(Partial*MinSep),CrLf); END "fp"; IF ShowPeakFinder THEN BEGIN "ShowHarms" REAL ARRAY CFrqs[1:Nspec]; REAL Val; Val <- LinAmp[1]; j <- 1; FOR Partial <- 1 STEP 1 UNTIL Npartials DO BEGIN FOR i <- j STEP 1 UNTIL Nfft*(LinFrq[Partial]/Fs) DO CFrqs[i] <- Val; j <- i; Val <- LinAmp[Partial]; END; Dpy2(XmagDB,CFrqs,i, "Centers of pitch-wide search regions for frame "&CVS(Frame), "MAGNITUDE (DB)",0,Fs/2,-30,30); END "ShowHarms"; SETFORMAT(Owid,Odig); END "FindPartials"; COMMENT OutPartials - Write partial amplitudes and frequencies to disk; PROCEDURE OutPartials(INTEGER Npartials,Nframes; REAL ARRAY Amps,Frqs; REAL Fs,Thresh); BEGIN "OutPartials" INTEGER N,AmpP,FrqP; N <- Npartials*Nframes; Sando(AmpF(Channel),AmpP,N,Amps,AmpH,AmpP,TRUE,AmpF(Pack)); Sando(FrqF(Channel),FrqP,N,Frqs,FrqH,FrqP,TRUE,FrqF(Pack)); Sando(AmpF(Channel),0,0,Amps,AmpH,AmpP,TRUE,AmpF(Pack)); Sando(FrqF(Channel),0,0,Frqs,FrqH,FrqP,TRUE,FrqF(Pack)); END "OutPartials"; COMMENT Decimate - Downsample by integer factors; INTEGER PROCEDURE Decimate(REAL ARRAY A; INTEGER N,M,I(0)); COMMENT Downsample array A[1:N] by M. I nonzero means initialize; COMMENT Return the number of samples produced; BEGIN "Decimate" OWN INTEGER P; INTEGER j; IF M LEQ 1 THEN RETURN(N); IF I NEQ 0 OR P LEQ 0 THEN P <- 1; j <- 0; FOR i <- P STEP M UNTIL N DO A[j <- j+1] <- A[i]; P <- i-N; RETURN(j); END "Decimate"; COMMENT GetWin - Compute overlap-add analysis window; INTEGER WinType; DEFINE Rectangular="1", Triangular="2", Hamming="3", GenHamming="4", Hanning="5", Kaiser="6", Chebyshev = "7", Nwins = "7"; PRELOAD!WITH "Rectangular", "Triangular", "Hamming", "GenHamming", "Hanning", "Kaiser", "Chebyshev"; STRING ARRAY WinNames[1:Nwins]; DEFINE WinStr = "WinNames[WinType]"; PROCEDURE GetWin(REAL ARRAY W; INTEGER Wtype,Nw; REAL P3(-1.),P4(-1.)); COMMENT Generate analysis window taking special care to ensure that it will overlap-add to unity in the case of a Hamming window with hopsize = Nw/(2K) Wtype Window ----- ------ 1 Rectangular 2 Triangular 3 Hamming 4 Generalized Hamming 5 Hanning 6 Kaiser 7 Chebyshev ; BEGIN "GetWin" # REQUIRE "SIGLIB.REL[SUB,SYS]" LIBRARY; EXTERNAL PROCEDURE !WINFLT(REAL ARRAY H; REFERENCE INTEGER NH; REFERENCE INTEGER WINTYP; REFERENCE INTEGER BNDTYP; REAL ARRAY P); REAL ARRAY WinPars[1:4]; WinPars[1] <- 0; # Lower cutoff frequency; WinPars[2] <- 0; # Upper cutoff frequency; IF WinType=Kaiser AND P3<0 THEN DO BEGIN IF NOT AinReal(P3 <- 60,"Kaiser stopband rejection in DB") THEN RETURN; IF P3 < 0 THEN PRINT("Stopband rejection must be POSITIVE dB...like 60",CRLF); END UNTIL P3 GEQ 0; IF WinType=GenHamming AND P3<0 THEN DO IF NOT AinReal(P3 <- 0.54,"Alpha (0:4)") THEN RETURN UNTIL (0 LEQ P3 LEQ 4); IF WinType=Chebyshev AND P4 LEQ 0 THEN DO BEGIN "GetCheb" IF NOT AinReal(P3, "Chebyshev stopband rejection in DB (or minus transition width in Hz/Srate)") THEN RETURN; IF P3<0 THEN BEGIN P4 <- P3; P3 <- 0; END ELSE P4 <- 0; END "GetCheb" UNTIL (0 LEQ P4<1/2 AND 0 LEQ P3); WinPars[3] <- P3; WinPars[4] <- P4; IF (Nw MOD 2) = 1 THEN BEGIN REAL ARRAY TmpBuf[1:2*Nw+1]; !WinFlt(TmpBuf,Nw,Wtype,1,WinPars); # Analysis window = lowpass, Fc=0; ARRTRAN(W,TmpBuf); IF Wtype>Rectangular THEN W[Nw] <- 0; # For odd lengths, last sample zeroed; END ELSE BEGIN REAL ARRAY TmpBuf[1:2*Nw+1]; INTEGER i; !WinFlt(TmpBuf,i <- 2*Nw+1,Wtype,1,WinPars); FOR i <- 1 STEP 1 UNTIL Nw DO W[i] <- TmpBuf[2*i]; END; BEGIN "nrmlz" # REQUIRE "JOSLIB.REQ[LIB,JOS]" SOURCE!FILE; EXTERNAL REAL PROCEDURE MaxArr(INTEGER n; REAL ARRAY y); INTEGER i; REAL Wmax,Wscl; Wmax <- MaxArr(Nw,W); Wscl <- 1.0/Wmax; FOR i <- 1 STEP 1 UNTIL Nw DO W[i] <- W[i]*Wscl; END "nrmlz"; Tdpyed(W,Nw,"GETWIN: Window returned"); END "GetWin"; BOOLEAN PROCEDURE GetIfile(STRING IfileTry); BEGIN "GetIfile" DO BEGIN FNparse(IfileTry,Idev,Ifile); PRINT(Tab,"Reading file ",Idev,":",Ifile,Crlf); RELEASE(InF(Channel)); OPEN(InF(Channel) <- GETCHAN,Idev,'17,0,0,200,Brk,Eof); LOOKUP(InF(Channel),Ifile,FAIL); IF FAIL THEN BEGIN PRINT("File not found",CrLf); PRINT("Input sound file: "); IfileTry <- INCHWL; IF !SKIP!=ALT THEN RETURN(FALSE); END ELSE BEGIN ReadH(InFptr,Head,FAIL,Quiet); # Read and print header; InF(Name) <- Ifile; END END UNTIL NOT FAIL; RETURN(TRUE); END "GetIfile"; BOOLEAN PROCEDURE GetOfile(STRING OfileTry); BEGIN "GetOfile" DO BEGIN Ofile <- OfileTry; FNparse(OfileTry,Odev,Ofile); PRINT(Tab,"Writing file ",Odev,":",Ofile,Crlf); RELEASE(OutF(Channel)); OPEN(OutF(Channel) <- GETCHAN,Odev,'17,0,0,200,Brk,Eof); ENTER(OutF(Channel),Ofile,FAIL); IF FAIL THEN BEGIN PRINT("Can't ENTER output file",CrLf); PRINT("Output sound file: "); OfileTry <- INCHWL; IF !SKIP!=ALT THEN RETURN(FALSE); END ELSE HaveOfile <- TRUE; END UNTIL NOT FAIL; RETURN(TRUE); END "GetOfile"; COMMENT Get user input parameters; SUPCT; # Disable \alpha-IC,\alpha-T,\alpha-L; TTYUP(TRUE); # Convert to upper case on input; TrpIni('26); # all except integer overflow (1) and real uflow ('10); # The following is apparently too severe: TRPINI(-1); # Enable decent floating point exception code; Find!Type; # Get terminal characteristics; Quiet <- (IF dpytype=ddtype THEN FALSE ELSE TRUE); PRINT(CrLf,"PARSHL: ", COMPILER!BANNER[LENGTH(SCANC(COMPILER!BANNER,Tab,"","sinz"))+11 FOR 17],CrLf); InFptr <- NEW!RECORD (File); OutFptr <- NEW!RECORD (File); AmpFptr <- NEW!RECORD (File); FrqFptr <- NEW!RECORD (File); BEGIN "GetPars" REQUIRE "{}<>" DELIMITERS; DEFINE #="comment",thru={ step 1 until },crlf={('15)&('12)},ALT={'175&""},CR={('15)&""}; # REQUIRE "JOSLIB.REQ[LIB,JOS]" SOURCE!FILE; EXTERNAL PROCEDURE READ_COMMAND(STRING Prompt;REFERENCE STRING Cbits,Arg2,Arg1,Cmd); EXTERNAL PROCEDURE SUPCT; COMMENT Inhibit activation on \alpha-T,\alpha-L,\alpha-B - the SUPCT bit; EXTERNAL STRING PROCEDURE Cvbs(BOOLEAN B); EXTERNAL STRING PROCEDURE Cvfs(REAL r); # STRING Ffile,Ifile,Ofile; # INTEGER Nfft,Nspec,Nh,Nx,Nhop,Ndec; STRING Prompt; IF Nfft LEQ 0 THEN # the test is for saving defaults across <CALL> START; BEGIN "defaults" Nfft <- 1024; Nx <- 676; Nh <- 0; Nhop <- Nx/2; Ndec <- 1; WinType <- Hamming; Trace <- 0; DoFlt <- FALSE; DoSynth <- TRUE; SwapOut <- FALSE; InstantRise <- FALSE; END "defaults"; Idev <- Odev <- "UDP2"; Ifile <- "PC3R.SND[XF,JOS]"; Ffile <- "TEST.FLT"; Ofile <- DerivedName(Ifile,"S"); HaveIfile <- HaveFfile <- HaveOfile <- HavePack <- FALSE; WHILE TRUE DO BEGIN "OmniLoop" WHILE TRUE DO BEGIN "OuterParameters" STRING Bucky,Arg2, Arg1,Cmd; INTEGER Boolhak,Brk; COMMENT Enforce parameter consistency constraints; WinType <- (1 MAX WinType MIN Nwins); Nx <- Nx MAX 1; IF Nfft < (i <- 2**(1+(i <- LOG(Nfft)/LOG(2)))) THEN PRINT(" Transform size increased to next power of 2 = ",Nfft <- i,CrLf); IF Nh > Nfft THEN PRINT(" Transform size increased to ", Nfft <- 2**(1+(i <- LOG(Nh+Nx)/LOG(2))),CrLf); IF SwapOut THEN DoFlt <- DoSynth <- FALSE; IF SwapOut THEN BEGIN OutF(Pack) <- 3; HavePack <- TRUE END; IF DoFlt AND (Nh+Nx GEQ Nfft) THEN PRINT("*** FILTER WILL TIME ALIAS ***",CrLf, " (FFT size should be at least frame size plus filter length - 1.)",CrLf, " To avoid time aliasing, set FFT size to at least ",Nh+Nx-1,CrLf, " or reduce data frame size and/or filter length",CrLf); DoOut <- (DoFlt OR DoSynth OR SwapOut); IF NOT DoOut THEN PRINT(" Warning: No output signal will be generated",CrLf, "Only amplitude and frequency envelopes will be computed.",CrLf); IF NOT (DoFlt OR DoSynth) THEN Ndec <- 1; Prompt <- Crlf& "Window("&CVS(WinType)&"="&WinStr& ") TransformSize("&CVS(Nfft)& ") DataLength("&CVS(Nx)& ") HopSize("&CVS(Nhop)& ")"&CRLF&" "& (IF DoFlt THEN "LengthFilter("&CVS(Nh)&") " ELSE NULL)& "Input("&Idev&":"&Ifile& ") Output("&Odev&":"&Ofile& ") PackingOut("&CVS(OutF(Pack))& ") "&(IF DoFlt THEN "Filter("&Ffile&")" ELSE NULL)&CrLf&" "& (IF (DoFlt OR DoSynth) THEN "Compression("&CVS(Ndec)&") " ELSE NULL)& "AdditiveSynthesis("&CVBS(DoSynth)& ") UseFilter("&CVBS(DoFlt)& ") XchangeOut("&CVBS(SwapOut)& ") or ?:"; COMMENT General command is "arg2,arg1,cmd" or "arg2,arg1 \alpha-cmd" or "arg2,arg1 \beta-cmd" or "arg2,arg1 \alpha-\beta-cmd"; READ_COMMAND (Prompt,Bucky,Arg2,Arg1,Cmd); COMMENT Allow boolean B to be set TRUE with \alpha-B or B<return> or FALSE with \beta-B or <any arg>,B<return>; Boolhak <- INTSCAN(Bucky,0); IF Boolhak \leq 1 THEN Boolhak <- 0; CASE Cmd OF BEGIN "SetParameters" ["?"] HELP(IF Arg1 THEN Arg1[1 FOR 1] ELSE "TopLevel"); ["W"] WinType <- INTSCAN(Arg1,Brk); ["T"] Nfft <- INTSCAN(Arg1,Brk); ["D"] Nx <- INTSCAN(Arg1,Brk); ["H"] Nhop <- INTSCAN(Arg1,Brk); ["L"] Nh <- INTSCAN(Arg1,Brk); ["C"] Ndec <- INTSCAN(Arg1,Brk); ["A"] DoSynth <- NOT (Arg1 + Boolhak); ["U"] DoFlt <- NOT (Arg1 + Boolhak); ["X"] SwapOut <- NOT (Arg1 + Boolhak); ["Z"] Trace <- INTSCAN(Arg1,Brk); ["I"] IF (HaveIfile <- GetIfile(IF Arg1 NEQ NULL THEN Arg1 ELSE Ifile)) THEN BEGIN IF NOT HaveOfile THEN Ofile <- DerivedName(Ifile,"S"); IF NOT HavePack THEN BEGIN OutF(Pack) <- (IF SwapOut THEN 3 ELSE InF(Pack)); HavePack <- TRUE; END; END; ["O"] HaveOfile <- GetOfile(IF Arg1 NEQ NULL THEN Arg1 ELSE Ofile); ["P"] IF Arg1 NEQ NULL THEN OutF(Pack) <- INTSCAN(Arg1,0) ELSE BEGIN PRINT(CrLf,"Packing codes are (0=12b, 1=18b, 3=FP, 4=16b SAM, 5=20b SAM)",CrLf, "Output packing code:"); Arg1 <- INCHWL; IF !SKIP!=ALT THEN CONTINUE "OmniLoop"; OutF(Pack) <- (IF Arg1=NULL THEN Sam16 ELSE INTSCAN(Arg1,0)); PRINT("Packing code set to ",OutF(Pack),CrLf); HavePack <- TRUE; END; ["F"] BEGIN Ffile <- Arg1&".FLT"; IF NOT (HaveFfile <- GetFlt(Ni,No,Ic,Oc,Ffile,FALSE,FALSE)) THEN CONTINUE "OmniLoop"; IF No>1 THEN PRINT(" Recursive part of filter ignored.",CRLF); Nh <- Ni; END; [";"] ; COMMENT For comments in command lines; [ALT] ["E"] CALL(0,"EXIT"); [CR] DONE "OuterParameters"; ELSE PRINT(" what?",Crlf) END "SetParameters"; END "OuterParameters"; IF NOT (HaveIfile OR (HaveIfile <- GetIfile(Ifile))) THEN CALL(0,"EXIT"); IF NOT HaveOfile THEN Ofile <- DerivedName(Ifile,"S"); IF NOT HavePack THEN BEGIN OutF(Pack) <- (IF SwapOut THEN 3 ELSE InF(Pack)); HavePack <- TRUE; END; IF InF(#chans)>1 THEN BEGIN PRINT(Crlf,"Sorry, can only do 1-channel files."); HaveIfile <- FALSE; CONTINUE "OmniLoop"; END; IF NOT (HaveOfile OR NOT DoOut OR (HaveOfile <- GetOfile(Ofile))) THEN CALL(0,"EXIT"); IF DoFlt AND NOT HaveFfile THEN DO BEGIN IF NOT (HaveFfile <- GetFlt(Ni,No,Ic,Oc,Ffile,FALSE,FALSE)) THEN CALL(0,"EXIT"); IF No>1 THEN PRINT(" Recursive part of filter ignored.",CRLF); Nh <- Ni; END UNTIL HaveFfile; Nframes <- (InF(#samps)-Nx)/Nhop + 1; # Number of frames to process; TmpStr <- "PARSHL: Input file was "&Idev&":"&Ifile&CrLf&Tab& (IF DoFlt THEN "Filter="&Ffile&CrLf&Tab ELSE NULL)&" "& (IF DoSynth THEN " AS" ELSE NULL)& " Nframes="&CVS(Nframes)& " Nfft="&CVS(Nfft)& " Window="&WinStr& " Nframe="&CVS(Nx)& " Nhop="&CVS(Nhop)& " Compression="&CVS(Ndec)&CrLf&Tab& "NOT FINISHED"&CrLf& "(+)"&Tab&InF(Text)&Crlf; IF DoOut THEN BEGIN "SUOutSound" OutH[0] <- 0; OutF(Dev ) <- ODev; OutF(Name ) <- Ofile; OutF(Clock ) <- InF(Clock)/Ndec; OutF(#chans) <- InF(#chans); OutF(#ticks) <- InF(#ticks)*Ndec; OutF(#samps) <- 0; OutF(Text ) <- TmpStr; WriteH(Head,OutF(Clock),OutF(Pack),OutF(#chans),OutF(#ticks),0,OutF(Text)); USETO(OutF(Channel),1); ARRYOUT(OutF(Channel),Head[1],128); END "SUOutSound"; BEGIN "SUAmps" DO BEGIN "GAF" Tstr <- DerivedName((IF HaveOfile THEN Odev ELSE Idev)&":"& (IF HaveOfile THEN Ofile ELSE Ifile),"A"); FNparse(Tstr,AmpDev <- NULL,AmpFile); PRINT(CrLf,"Output amplitude envelopes file (=",AmpDev,":",AmpFile,"): "); Tstr <- INCHWL; IF !SKIP!=ALT THEN CALL(0,"EXIT"); FNparse(Tstr,AmpDev,AmpFile); PRINT(Tab,"Writing file ",AmpDev,":",AmpFile,Crlf); OPEN(AmpF(Channel) <- GETCHAN,AmpDev,'17,0,0,200,Brk,Eof); ENTER(AmpF(Channel),AmpFile,FAIL); IF FAIL THEN PRINT("Can't ENTER amplitudes output file",CrLf); END "GAF" UNTIL NOT FAIL; AmpH[0] <- 0; AmpF(Dev ) <- AmpDev; AmpF(Name ) <- AmpFile; AmpF(Clock ) <- InF(Clock)/Ndec; AmpF(#chans) <- InF(#chans); AmpF(#ticks) <- InF(#ticks)*Ndec; AmpF(#samps) <- 0; AmpF(Pack ) <- 3; AmpF(Text ) <- TmpStr; WriteH(Head,AmpF(Clock),AmpF(Pack),AmpF(#chans),AmpF(#ticks),0,AmpF(Text)); # Block size parameter (not yet supported by WriteH); Head[8] <- MEMORY[LOCATION(Nframes),REAL]; USETO(AmpF(Channel),1); ARRYOUT(AmpF(Channel),Head[1],128); END "SUAmps"; BEGIN "SUFrqs" DO BEGIN "GFF" EXTERNAL STRING PROCEDURE NAME(STRING Name); COMMENT Return NAME part of filename; EXTERNAL STRING PROCEDURE EXT(STRING Name); COMMENT Return extension part of filename; EXTERNAL STRING PROCEDURE PPN(STRING Name); COMMENT Return PPN part of filename; Tstr <- Name(AmpFile); Tstr <- Tstr[1 TO LENGTH(Tstr)-1]; # Strip off trailing "A"; Tstr <- Tstr&Ext(AmpFile)&Ppn(AmpFile); Tstr <- DerivedName(AmpDev&":"&Tstr,"F"); FNparse(Tstr,FrqDev <- NULL,FrqFile); PRINT(CrLf,"Output frequency envelopes file (=",FrqDev,":",FrqFile,"): "); Tstr <- INCHWL; IF !SKIP!=ALT THEN CALL(0,"EXIT"); FNparse(Tstr,FrqDev,FrqFile); PRINT(Tab,"Writing file ",FrqDev,":",FrqFile,Crlf); OPEN(FrqF(Channel) <- GETCHAN,FrqDev,'17,0,0,200,Brk,Eof); ENTER(FrqF(Channel),FrqFile,FAIL); IF FAIL THEN PRINT("Can't ENTER Frq output file",CrLf) END "GFF" UNTIL NOT FAIL; FrqH[0] <- 0; FrqF(Dev ) <- FrqDev; FrqF(Name ) <- FrqFile; FrqF(Clock ) <- InF(Clock)/Ndec; FrqF(#chans) <- InF(#chans); FrqF(#ticks) <- InF(#ticks)*Ndec; FrqF(Pack ) <- 3; FrqF(#samps) <- 0; FrqF(Text ) <- TmpStr; WriteH(Head,FrqF(Clock),FrqF(Pack),FrqF(#chans),FrqF(#ticks),0,FrqF(Text)); # Block size parameter (not yet supported by WriteH); Head[8] <- MEMORY[LOCATION(Nframes),REAL]; USETO(FrqF(Channel),1); ARRYOUT(FrqF(Channel),Head[1],128); END "SUFrqs"; CALL (InF(Channel), "SHOWIT"); # Simulate an <esc>2x for the input channel; SETFORMAT(0,5); # For buffer begin-time print-out and squelched frqs; Nspec <- (Nfft DIV 2) + 1; Maxamp <- 0; Nhops <- 0; # Counts up to Nframes unless aborted with ESC-I; # changed from 2 to 4, XJS 3.12.87; SigScl <- 4/Nx; # Guess for Hamming window, 50% overlap; REQUIRE CrLf&" IS SIGSCL CORRECT?? (Synth scaling)"&CrLf MESSAGE; COMMENT Additional input parameters for PARSHL analysis; IF MaxLins LEQ 0 THEN BEGIN "Idefaults" MinSep <- InF(Clock)/(Nx/4); # This is right when there are 4 period per frame; # Each valid peak should be (Nfft/Nx)*4 bins wide (4 for Hamming); MinWid <- 2.0*Nfft/Nx+1; # Half of expected width plus 1 (sidelobes rejected); MaxLins <- 60 MIN 0.5*InF(Clock)/MinSep; MaxOscs <- 40 MIN 0.5*InF(Clock)/MinSep; Fc1 <- InF(Clock)/1000; Fc2 <- InF(Clock)/2; Thresh <- -30; Hyst <- 0.1; # DAmax <- 10; # Disabled; DFmax1 <- MinSep/2; DFmax2 <- DFmax1; END "Idefaults"; WHILE TRUE DO BEGIN "InnerParameters" STRING Bucky,Arg2, Arg1,Cmd; INTEGER Boolhak,Brk; MinSep <- (0 MAX MinSep MIN InF(Clock)/4); MinWid <- (0 MAX MinWid MIN Nspec); MaxLins <- (1 MAX MaxLins MIN Nspec); MaxOscs <- (1 MAX MaxOscs MIN MaxLins); Thresh <- (-760 MAX Thresh MIN 760); Hyst <- (Hyst MAX 0); DFmax1 <- (0 MAX DFmax1 MIN InF(Clock)/2); DFmax2 <- (0 MAX DFmax2 MIN InF(Clock)/2); Prompt <- Crlf& "MinSpacing("&Cvfs(MinSep)&"Hz"& ") BinMin("&CVS(MinWid)& ") Nlines("&CVS(MaxLins)& ") Oscs("&CVS(MaxOscs)& ") InstantRise("&Cvbs(InstantRise)&")"&CRLF& " FirstFrq("&Cvfs(Fc1)& ") LastFrq("&Cvfs(Fc2)& ") Thresh("&Cvfs(Thresh)&"dB"&")"&CRLF& " Hyst("&Cvfs(Hyst)&"dB"& ") DFmax("&Cvfs(DFmax1)&"Hz"& ") UltDFmax("&Cvfs(DFmax2)&"Hz"& ") or ?:"; READ_COMMAND (Prompt,Bucky,Arg2,Arg1,Cmd); Boolhak <- INTSCAN(Bucky,0); IF Boolhak \leq 1 THEN Boolhak <- 0; CASE Cmd OF BEGIN "SetParameters" ["?"] HELP(IF Arg1 THEN Arg1[1 FOR 1] ELSE "SubLevel"); ["M"] MinSep <- REALSCAN(Arg1,Brk) MAX 0.0; ["N"] MaxLins <- INTSCAN(Arg1,Brk) MAX 1; ["O"] MaxOscs <- INTSCAN(Arg1,Brk) MAX 1; ["F"] Fc1 <- REALSCAN(Arg1,Brk) MAX 0.0; ["L"] Fc2 <- REALSCAN(Arg1,Brk) MIN InF(Clock)/2; ["T"] Thresh <- REALSCAN(Arg1,Brk); ["I"] InstantRise <- NOT (Arg1 + Boolhak); ["H"] Hyst <- REALSCAN(Arg1,Brk) MAX 0.0; ["D"] DFmax1 <- DFmax2 <- (REALSCAN(Arg1,Brk) MAX 0.0); ["U"] DFmax2 <- REALSCAN(Arg1,Brk) MAX 0.0; ["B"] MinWid <- INTSCAN(Arg1,Brk) MAX 0; ["Z"] Trace <- INTSCAN(Arg1,Brk); [";"] ; COMMENT For comments in command lines; [ALT] ["E"] CONTINUE "OmniLoop"; [CR] DONE "InnerParameters"; ELSE PRINT(" hmmm?",Crlf) END "SetParameters"; END "InnerParameters"; DONE "OmniLoop"; END "OmniLoop"; END "GetPars"; COMMENT Allocation of analysis data structures; BEGIN "ALAR" # Allocate arrays; # REQUIRE "SIGLIB.REL[SUB,SYS]" LIBRARY; EXTERNAL PROCEDURE !FFA(REAL ARRAY B; REFERENCE INTEGER NFFT); EXTERNAL PROCEDURE !FFS(REAL ARRAY B; REFERENCE INTEGER NFFT); INTEGER Yp,Xp,Bp,Nout,i; REAL ARRAY X[1:Nfft+2],H[1:Nfft+2],XmagDB[1:Nspec], OutBuf[1:2*Nfft],WinBuf[1:Nx]; REAL ARRAY Amps,Frqs[1:MaxLins,1:Nframes]; # Output database; INTEGER ARRAY Nactive[1:Nframes]; # No. active lines each frame; # Data structures for additive synthesis oscillators. (Use explained next page); INTEGER CurOsc,CurLin,Nlins,Noscs,PrvNoscs; INTEGER ARRAY OscOfLin[1:MaxLins]; # Osc no. assigned to each Lin; INTEGER ARRAY PrvLinOfOsc[1:MaxOscs]; # Lin no. assigned to each osc; INTEGER ARRAY LinOfOsc[1:MaxOscs]; # PrvLinOfOsc for next frame; INTEGER ARRAY OscPhs[1:MaxOscs]; # Current phases (sum of frequency); REAL ARRAY PrvOscAmp[1:MaxOscs]; # Current amplitudes (Linar ramps to targets); REAL ARRAY PrvOscFrq[1:MaxOscs]; # Current frequency (Linar ramp to that of Lin); REAL ARRAY OscAmp[1:MaxOscs]; # Target amplitude; REAL ARRAY OscFrq[1:MaxOscs]; # Target frequency; REAL ARRAY LinAmpDB[1:MaxLins]; # Target amplitudes of some osc in dB; REAL ARRAY LinAmp[1:MaxLins]; # Target amplitudes of some osc; REAL ARRAY LinFrq[1:MaxLins]; # Current instantaneous frequency; # REAL ARRAY LinPhs[1:MaxLins]; # Phase is the first thing thrown away; COMMENT Oscillator allocation utilities; DEFINE UDTrace = " (ABS(Trace)>2) "; DEFINE PrvOscOn(x) = { (PrvLinOfOsc[x] > 0) }, PrvOscFree(x) = { (PrvLinOfOsc[x] = 0) }, PrvOscSquelched(x) = { (PrvLinOfOsc[x] < 0) }, OscOn(x) = { (LinOfOsc[x] > 0) }, OscFree(x) = { (LinOfOsc[x] = 0) }, OscSquelched(x) = { (LinOfOsc[x] < 0) }, StopOsc(x) = { BEGIN LinOfOsc[x] <- -ABS(PrvLinOfOsc[x]); IF UDtrace THEN PRINT (" Osc ",x," turned off.",CrLf) END }, LinFree(x) = { (OscOfLin[x] = 0) }, LinClaimed(x) = { (OscOfLin[x] > 0) }; INTEGER PROCEDURE NxtPrvOscOn(INTEGER CurOsc); COMMENT Return next active oscillator after CurOsc, with wrap-around. Return 0 if no active oscillators; BEGIN "NxtPrvOscOn" INTEGER cnt,Found; Found <- 0; FOR cnt <- 1 Thru MaxOscs DO BEGIN CurOsc <- CurOsc+1; IF CurOsc>MaxOscs THEN CurOsc <- CurOsc-MaxOscs; IF PrvOscOn(CurOsc) THEN BEGIN Found <- CurOsc; DONE END; IF UDtrace THEN PRINT (" Skipping inactive Prv Osc number ",CurOsc,CrLf); END; IF UDtrace THEN PRINT (" Next active Prv Osc is number ",CurOsc,CrLf); IF Found=0 THEN PRINT(CrLf,"*!*!* Next active Prv Osc not found!",CrLf); RETURN(Found) END "NxtPrvOscOn"; INTEGER PROCEDURE NxtOscOn(INTEGER CurOsc); COMMENT Return next active oscillator after CurOsc, with wrap-around. Return 0 if no active oscillators; BEGIN "NxtOscOn" INTEGER cnt,Found; Found <- 0; FOR cnt <- 1 Thru MaxOscs DO BEGIN CurOsc <- CurOsc+1; IF CurOsc>MaxOscs THEN CurOsc <- CurOsc-MaxOscs; IF OscOn(CurOsc) THEN BEGIN Found <- CurOsc; DONE END; IF UDtrace THEN PRINT (" Skipping inactive Osc number ",CurOsc,CrLf); END; IF UDtrace THEN PRINT (" Next active Osc is number ",CurOsc,CrLf); IF Found=0 THEN PRINT(CrLf,"*!*!* Next active osc not found!",CrLf); RETURN(Found) END "NxtOscOn"; INTEGER PROCEDURE NxtOscFree(INTEGER CurOsc); COMMENT Return next free oscillator after CurOsc, with wrap-around. Return 0 if no free oscillators; BEGIN "NxtOscFree" INTEGER cnt,Found; Found <- 0; FOR cnt <- 1 Thru MaxOscs DO BEGIN CurOsc <- CurOsc+1; IF CurOsc>MaxOscs THEN CurOsc <- CurOsc-MaxOscs; IF OscFree(CurOsc) THEN BEGIN Found <- CurOsc; DONE END; IF UDtrace THEN PRINT (" Skipping non-free Osc number ",CurOsc,CrLf); END; IF UDtrace THEN PRINT (" Next free Osc is number ",CurOsc,CrLf); IF Found=0 THEN PRINT(CrLf,"*!*!* Next free osc not found!",CrLf); RETURN(Found) END "NxtOscFree"; INTEGER PROCEDURE NxtOscEnding(INTEGER CurOsc); COMMENT Return next Ending oscillator after CurOsc, with wrap-around. Return 0 if no Ending oscillators; BEGIN "NxtOscEnding" INTEGER cnt,Found; Found <- 0; FOR cnt <- 1 Thru MaxOscs DO BEGIN CurOsc <- CurOsc+1; IF CurOsc>MaxOscs THEN CurOsc <- CurOsc-MaxOscs; IF OscSquelched(CurOsc) THEN BEGIN Found <- CurOsc; DONE END; IF UDtrace THEN PRINT (" Skipping non-Ending Osc number ",CurOsc,CrLf); END; IF UDtrace THEN PRINT (" Next Ending Osc is number ",CurOsc,CrLf); IF Found=0 THEN PRINT(CrLf,"*!*!* Next Ending osc not found!",CrLf); RETURN(Found) END "NxtOscEnding"; INTEGER PROCEDURE ClosestOscFree(REAL NewFrq); COMMENT Return free oscillator with frequency closest to NewFrq. Return 0 if no free oscillators; BEGIN "ClosestOscFree" INTEGER Cnt,Found; REAL Dis,BestDis; Found <- NxtOscFree(0); IF Found=0 THEN BEGIN PRINT(CrLf,"*!*!* Next free osc not found!",CrLf); RETURN(Found) END; BestDis <- 1.0@38; Found <- 0; FOR cnt <- 1 Thru MaxOscs DO BEGIN IF OscFree(Cnt) THEN IF LinOfOsc[Cnt] NEQ 0 THEN IF (Dis <- ABS(NewFrq-LinFrq[ABS(LinOfOsc[Cnt])]))<BestDis THEN BEGIN Found <- Cnt; BestDis <- Dis; END; END; IF Found=0 THEN Found <- NxtOscFree(0) # None were ever used before; ELSE IF UDtrace THEN BEGIN PRINT (" Desired frq = ",NewFrq,CrLf); PRINT (" Closest frq = ",LinFrq[ABS(LinOfOsc[Found])],CrLf); PRINT (" Closest free osc is number ",Found,CrLf); END; RETURN(Found) END "ClosestOscFree"; COMMENT CkFrqs is OBSOLETE (replaced by GetClosestFrq); INTEGER PROCEDURE CkFrqs(INTEGER CurOsc; REAL DFlim); # Search for a line within specs, starting from where last one was. We assume partials are always quick-sorted by frequency so that usually the answer is a next-door neighbor ; BEGIN "CkFrqs" INTEGER LstLin; REAL TF,PF,DF,t; CurOsc <- NxtPrvOscOn(CurOsc); IF CurOsc LEQ 0 THEN RETURN(CurOsc); PF <- OscFrq[CurOsc]; # Former target frequency of oscillator CurOsc; LstLin <- PrvLinOfOsc[CurOsc] MIN Nlins; # Line this osc had last frame; IF LstLin<1 THEN BEGIN PRINT(" *** Nlins=0? ***"); RETURN(CurOsc) END; TF <- LinFrq[LstLin]; # Target frequency using last frame assignment; DF <- ABS(TF-PF); # Absolute change in frequency; IF UDtrace THEN PRINT( " Prv Frq for Osc ",CurOsc," was Line ",LstLin,"=",PF,CrLf, " Trg Frq for Osc ",CurOsc," on same Line ",LstLin,"=",TF,CrLf, " Del Frq for Osc ",CurOsc," would then be ",100*DF,"%",CrLf); IF DF > DFlim THEN BEGIN "DFerror" INTEGER Found; IF UDtrace THEN PRINT( "$$$ Frequency tolerance exceeded for Osc ",CurOsc," Frame ",Frame,CrLf); Found <- 0; DEFINE FrqInRange = { ABS(LinFrq[CurLin]-PF) LEQ DFlim }; DEFINE GotIt = { BEGIN Found <- CurLin; IF Trace THEN PRINT(" Found = ",Found,CrLf); DONE END }; FOR CurLin <- LstLin-1 STEP -1 UNTIL 1 DO IF FrqInRange THEN Gotit; IF Found=0 THEN FOR CurLin <- LstLin+1 STEP 1 UNTIL Nlins DO IF FrqInRange THEN Gotit; IF Found=0 THEN BEGIN "LineLost" PRINT(" LINE AT ",PF,"Hz LOST!",CrLf); StopOsc(CurOsc); END "LineLost" ELSE IF OscOfLin[Found] NEQ 0 THEN BEGIN "ohno" # Serious problem. The fix is to go find the other nearby line; PRINT("*!*!* LINE ",Found, " HAS CAPTURED OSCILLATORS ",OscOfLin[Found]," AND ",CurOsc,CrLf, " I HAVE TO DELETE ONE OSCILLATOR AND PROBABLY LOSE A NEARBY LINE",CrLf); StopOsc(CurOsc); END "ohno" ELSE BEGIN "LineFound" LinOfOsc[CurOsc] <- Found; OscOfLin[Found] <- CurOsc; Noscs <- Noscs+1; IF UDtrace THEN PRINT( " *New* line number is ",LinOfOsc[CurOsc], "=",LinFrq[LinOfOsc[CurOsc]], " hopefully closer to PF=",PF,CrLf) END "LineFound" END "DFerror" ELSE BEGIN "DFok" LinOfOsc[CurOsc] <- LstLin; OscOfLin[LstLin] <- CurOsc; Noscs <- Noscs+1; IF UDtrace THEN PRINT(" # SAME # line number used for osc ",CurOsc,CrLf) END "DFok"; RETURN(CurOsc); END "CkFrqs"; RECURSIVE PROCEDURE GetClosestFrq(INTEGER CurOsc; REAL DFmax); # Go through all active lines and find the one closest (BestFrq) to the previous frequency (PF) of oscillator CurOsc. If the difference between BestFrq and PF exceeds the frequency change limit (DFmax), the oscillator is turned off. (If it is already off it stays off.) On the other hand, if ABS(BestFrq-PF)<DFmax, a check is made to see if any other running osc has claimed this line already. If so, it is determined who is closer, and the loser is turned off. If the DFmax test passes and there are no collisions, the line is claimed by placing its number in LinOfOsc[CurOsc]. The osc is then running because LinOfOsc[CurOsc] will then be positive. ; BEGIN "GetClosestFrq" INTEGER j,BestLin,CurLin; REAL PF,CurDist,MinDist,BestFrq; # IF NOT PrvOscOn(CurOsc) THEN PRINT(" *** GetClosestFrq: Called on squelched osc ",CurOsc," ***",CrLf); PF <- OscFrq[CurOsc]; # Former target frequency of oscillator CurOsc; IF UDtrace THEN PRINT(" Prv frq for osc ",CurOsc," = ",PF,CrLf); BestLin <- 0; MinDist <- 1.0@38; DEFINE Dist(x,y) = { ABS((x)-(y)) }; FOR CurLin <- 1 STEP 1 UNTIL Nlins DO IF MinDist>(CurDist <- Dist(PF,LinFrq[CurLin])) THEN IF LinFree(CurLin) THEN BEGIN "PotentiallyMine" MinDist <- CurDist; BestLin <- CurLin END "PotentiallyMine" ELSE BEGIN "PotentiallyHis" INTEGER OtherOsc; REAL CurFrq; CurFrq <- LinFrq[CurLin]; OtherOsc <- OscOfLin[CurLin]; # Osc who has already claimed this line; IF CurDist<Dist(CurFrq,OscFrq[OtherOsc]) THEN BEGIN "HeCantHaveIt" MinDist <- CurDist; BestLin <- CurLin; IF UDtrace THEN PRINT(" GetClosestFrq Recursing on bumped osc ",OtherOsc,CrLf); OscOfLin[CurLin] <- CurOsc; # Tentatively claim this while other guy fishes; GetClosestFrq(OtherOsc,DFmax); # Go fish, OtherOsc; OscOfLin[CurLin] <- 0; # Unclaim; END "HeCantHaveIt" END "PotentiallyHis"; IF BestLin LEQ 0 THEN BEGIN "SureIsCrowded" PRINT(" *!*!* Osc ",CurOsc," could find no best line!!",CrLf); StopOsc(CurOsc); RETURN END "SureIsCrowded"; # Now BestLin points to the best line for osc CurOsc with all contention resolved; BestFrq <- LinFrq[BestLin]; IF UDtrace THEN PRINT(" Bst frq for osc ",CurOsc," = ",BestFrq,CrLf); IF MinDist > DFmax THEN BEGIN "DFerror" # And after all that!; IF UDtrace THEN PRINT("$$$ Frequency tolerance exceeded for Osc ",CurOsc,CrLf); StopOsc(CurOsc); # If already stopped, StopOsc is a noop; END "DFerror" ELSE BEGIN "TakeIt" LinOfOsc[CurOsc] <- BestLin; OscOfLin[BestLin] <- CurOsc; IF UDtrace THEN PRINT(" Osc ",CurOsc," grabs line ",BestLin,CrLf); END "TakeIt"; RETURN; END "GetClosestFrq"; COMMENT UpdateMap - Assign oscillators target values to partials. UpdateMap figures out which spectral lines go with which running oscillators. It makes extensive reference to the data structure of the previous page. (The routine is declared here to avoid a long argument list.) FindPartials prepares a list of partial amplitudes and frequencies active in the current frame. Since the partials (or lines) are found in order of decreasing amplitude, they can get arbitrarily reordered from frame to frame. It helps to sort by frequency the partials. However, there is still the problem of partials appearing and disappearing. This version of UpdateMap assumes lines to be sorted by ascending frequency. Here is a strategy: Initialization is trivial, so assume we are into the analysis at time Frame. Suppose there are Noscs active oscillators. Then (1) Each active oscillator looks for its line by finding the one which is closest in frequency. If it cannot find its line then it assumes the line disappeared and puts itself into the ramp-off state. (The previous amplitude tells whether this is a reasonable assumption, but the information is not being put to use here.) When an oscillator finds its line, it marks the line as taken. This prevents crossing partials from putting two oscillators on the same line and losing the other one. Thus, an oscillator must find its line among those not already taken. A count is made of the total number of line-to-osc assignments. There cannot be more successfully assigned oscs than than lines because of the "taken" mark interlock. However, there can be lines left over after all bands have been searched. (2) If there are one or more new lines, a pass is made through the Lines-in-Use array, and an oscillator is dispatched onto each line found not to be taken. An oscillator marks a line as taken by storing its id in an array. Therefore, if a collision occurs, the oscillator on the closest track can be given the line. In the current implementation, only a warning is issued. Each oscillator has 3 states: On, off, stopping. On means that the oscillator is to ramp from its previous amplitude to the current amplitude over Nhop samples. Off means no output. Stopping means the oscillator is ramping to zero. If we can ramp to zero from any amplitude in Nhop samples, we only need On and Off states (Stopping is then equivalent to Off with a previous amplitude > 0). However, it is also possible that ramps should comprise several hops when going from an arbitrary amplitude to 0. A hop is typically on the order of two periods of sound. JOS 14-JUN-85 : After getting the above working, I think the osc-to-line assignment strategy should be changed so that an oscillator is assigned a fixed frequency band. That way, an oscillator will not jump from line to line as we see now. This wastes oscillators (because bands with no lines are generating zeros) but consolidation can take place later. For now, I think it is best to have convenient AMPS and FRQS functions which are easy to look at. When an oscillator loses its line and gets dispatched on another line far away in frequency, it makes the AMPS and FRQS arrays unintelligible. Thus, UpDateMap is based on these changes. DAJ mentions what if a line is crossing back and forth between two bands? Instead, how about doing the previous version, but when assigning free oscs to new lines, find the osc with closest previous frequency. A losing case here is when a new line appears close to (but below) another line and captures the other lines osc. JOS 15-JUN-85 : After talking with Gerold, it was decided that we will do the following allocation strategy: * The input sound is reversed in time to allow postponement of the attack analysis until the end. * Working backwards through the sound, we dispatch a new oscillator on each new sinusoidal line which appears. Once committed to a frequency, an oscillator cannot be reassigned to a new frequency except by tracking valid glissandos. * For each frame, each oscillator finds the line which is closest to its current frequency. The current frequency is normally the frequency of the line in the previous frame used by this oscillator, except when the oscillator is off. A stopped osc remembers its last valid frequency as its current frequency. The difference between the closest line frequency and the current frequency are compared to a maximum-change limit. If this limit is exceeded the oscillator is turned off (or left off). Otherwise, a check is made to see if the best line has been claimed by another oscillator already in the current frame. If not, the osc claims the line and we go process the next osc. If there is a collision, we give the line to the osc which has to move the shortest distance in frequency to reach the new line. The osc which does not get the new line (in a collision) is turned off and its "current frequency" is rolled back to what it was before it claimed the new line. *** NOTE *** This is not optimal. It may be that OSC 1 claims LINE K+1 instead of LINE K which it normally claims. OSC 2 comes along and takes back LINE K. OSC 1 is turned off, and nobody can claim LINE K which is still there. Ideally, if an OSC is bumped from a line it claimed because another OSC came along later with a better fit to it, the bumped osc should get another pass to look for a "consolation line". [JOS: Implemented 15-JUN-85 9:21] REMARK: When the frequency deviation exceeds the allowed level, it is normally because the line for that oscillator dropped out. However, we can also get shaken loose by excessive frequency vibrato. In this case one oscillator turns off and another will hopefully start up elsewhere. 8-JUL-85 Consider allowing Oscs to find their peaks in DBspec instead of LinFrqs. Operation would be exactly as now, except the raw DB mag spectrum is searched for a local max nearest the current osc frq. Marking of a peak as "taken" is as before but now using the FindPeak method of peak removal. Every osc must be allowed to search the raw initial spectrum. GRS has suggested doing groups reduction on the mag^2 spectrum (summing power within a group and letting center frq of the group stand for line frq for the group). This way, PARSHL runs as if there were only 16 or so lines in the spectrum. Each group becomes a "virtual line" with its own AMP and FRQ. ; COMMENT (UpdateMap) - Initialization; PROCEDURE UpdateMap; COMMENT Arguments (See "Allocation of analysis data structures" above); BEGIN "UpdateMap" INTEGER i,Nadd,Owid,Odig; STRING CrLfd; REAL PROCEDURE DFmax(INTEGER CurOsc); # Return maximum allowed glissando for oscillator CurOsc; BEGIN "DFmax" OWN BOOLEAN ARRAY Inited[1:1]; # Array so <CALL>START<CR> will clear it; OWN REAL Alpha, Beta, DFmaxr; IF NOT Inited[1] THEN BEGIN "DFinit" REAL f1,f2; INTEGER kase; Inited[1] <- TRUE; f1 <- Fc1 MAX 0; f2 <- Fc2 MIN Fs/2; IF DFmax1=DFmax2 THEN kase <- 3 ELSE IF f1=0 THEN kase <- 2 ELSE kase <- 1; Alpha <- (CASE kase OF (0,(DFmax2/f2-DFmax1/f1)/(f2-f1),(DFmax2-DFmax1)/(f2-f1),0)); Beta <- (CASE kase OF (0,(DFmax1*f2/f1-DFmax2*f1/f2)/(f2-f1),(DFmax1*f2-DFmax2*f1)/(f2-f1),DFmax1)); END "DFinit"; DFmaxr <- Alpha*OscFrq[CurOsc]+Beta; IF Debug3 THEN PRINT(" Computed DFmax for OSC ",CurOsc," at freq ",OscFrq[CurOsc]," is ",DFmaxr,CrLf); RETURN(DFmaxr); END "DFmax"; GETFORMAT(Owid,Odig); IF Frame LEQ 1 THEN BEGIN "initialize" Noscs <- Nactive[Frame] MIN MaxOscs; Nlins <- Nactive[Frame] MIN MaxLins; FOR CurOsc <- 1 STEP 1 UNTIL Noscs DO BEGIN LinOfOsc[CurOsc] <- (CurLin <- CurOsc); PrvLinOfOsc[CurOsc] <- LinOfOsc[CurOsc]; # For next entry; OscOfLin[CurLin] <- CurOsc; OscPhs[CurOsc] <- 0; OscAmp[CurOsc] <- LinAmp[CurLin]; PrvOscAmp[CurOsc] <- (IF InstantRise THEN LinAmp[CurLin] ELSE 0); PrvOscFrq[CurOsc] <- LinFrq[CurLin]; OscFrq[CurOsc] <- LinFrq[CurLin]; END; PRINT(" Initialization of ",Noscs," oscillators to the tallest of ",Nlins," lines.",CrLf); RETURN END "initialize"; SETFORMAT(0,7); COMMENT (UpdateMap) - Association of spectral lines to oscs; Nlins <- Nactive[Frame]; # Number of Lins currently active; REQUIRE " PrvLinOfOsc only used for trace messages?" MESSAGE; ARRTRAN(PrvLinOfOsc,LinOfOsc); ARRCLR(LinOfOsc); ARRCLR(OscOfLin); IF UDtrace THEN BEGIN PRINT(CrLf,"------- UpdateMap entry on frame ",Frame," --------", CrLf, " Number of lines = ",Nlins," ... Number of oscs = ",Noscs,CrLf, " PrvLinOfOsc follows:",CrLf); FOR i <- 1 Thru MaxOscs DO PRINT(" ",PrvLinOfOsc[i]); END; FOR CurOsc <- 1 STEP 1 UNTIL Noscs DO GetClosestFrq(CurOsc,DFmax(CurOsc)); # Allocate oscillators to new lines, if any; Nadd <- (Nlins MIN MaxOscs)-Noscs; IF Nadd>0 THEN BEGIN "Add" PRINT("$$$ Adding ",Nadd," oscillator(s) $$$",CrLf); CurLin <- 0; FOR CurOsc <- Noscs+1 Thru Noscs+Nadd DO BEGIN "AddOsc" DO CurLin <- CurLin+1 UNTIL OscOfLin[CurLin]=0; ; # Find lin with no osc; OscOfLin[CurLin] <- CurOsc; LinOfOsc[CurOsc] <- CurLin; IF UDtrace THEN PRINT(" Osc ",CurOsc," dispatched to ",LinFrq[CurLin]," Hz",CrLf); END "AddOsc"; Noscs <- Noscs+Nadd; END "Add"; IF UDtrace THEN BEGIN PRINT(CrLf," <- *^Y <- *^YUpdateMap exit on frame ",Frame,CrLf, " PrvLinOfOsc follows:",CrLf); FOR CurOsc <- 1 Thru MaxOscs DO PRINT(" ",PrvLinOfOsc[CurOsc]); PRINT(CrLf," LinOfOsc follows:",CrLf); FOR CurOsc <- 1 Thru MaxOscs DO PRINT(" ",LinOfOsc[CurOsc]); PRINT(CrLf," OscOfLin follows:",CrLf); FOR CurLin <- 1 Thru MaxOscs DO PRINT(" ",OscOfLin[CurLin]); END; COMMENT (UpdateMap) - Update new amp/frq target; # Update target values for synthesis up to latest spectral frame; FOR CurOsc <- 1 Thru MaxOscs DO BEGIN "OutAF" PrvOscFrq[CurOsc] <- OscFrq[CurOsc]; IF OscOn(CurOsc) THEN OscFrq[CurOsc] <- LinFrq[LinOfOsc[CurOsc]]; PrvOscAmp[CurOsc] <- OscAmp[CurOsc]; OscAmp[CurOsc] <- (IF OscOn(CurOsc) THEN LinAmp[LinOfOsc[CurOsc]] ELSE 0); IF PrvOscAmp[CurOsc]=0 THEN PrvOscFrq[CurOsc] <- OscFrq[CurOsc]; END "OutAF"; CrLfd <- FALSE; DEFINE CkCrLf={ (IF NOT CrLfd THEN CrLf ELSE NULL) }; # Gad, what an awkward thing; FOR CurOsc <- 1 STEP 1 UNTIL Noscs DO BEGIN IF PrvOscFree(CurOsc) AND OscOn(CurOsc) THEN PRINT(CkCrLf," $$$ Osc ",CurOsc," *starting* on frequency ",OscFrq[CurOsc]," $$$",Crlfd <- CrLf); IF PrvOscSquelched(CurOsc) AND OscOn(CurOsc) THEN PRINT(CkCrLf," $$$ Osc ",CurOsc," *revived* on frequency ",OscFrq[CurOsc]," $$$",CrLfd <- CrLf); IF OscSquelched(CurOsc) AND PrvOscOn(CurOsc) THEN PRINT(CkCrLf," $$$ Osc ",CurOsc," *squelched* on frequency ",OscFrq[CurOsc]," $$$",CrLfd <- CrLf); END; SETFORMAT(Owid,Odig); END "UpdateMap"; COMMENT Synthesize - Use database to run oscillators up to latest targets; DEFINE UseFixedPoint = "FALSE"; # Set true for fast execution; DEFINE SinSiz = "512"; # No. wds in Sine table for synthesis; IFC UseFixedPoint THENC INTEGER ELSEC REAL ENDC ARRAY SinBuf[0:SinSiz-1]; # Sine table; REAL Mag; # Mag * Frq = Sine table increment; PROCEDURE Synthesize(INTEGER Nhop,Bp,Fs,Frame); # Crank out MaxOscs sinusoids from amplitude PrvOscAmp[i] to OscAmp[i], and frequency PrvOscFrq[i] to OscFrq[i] (integrating OscPhs[i]). Add result to OutBuf[Bp+1:Bp+Nhop]. Only Noscs oscs will be active, but there are also some Ending ones which have to be ramped to 0. Hence a loop from 1 to MaxOscs is required. At present, there is no way to specify skipping the first N partials in the synthesis. Since the oscs are not necessarily sorted by frequency, this requires a little fooling around. See the QuickSort (QIsort) in FindPartials for ideas. I think I would sort the oscillator numbers according to increasing frequency, and then testing OscOn I would skip over the first active oscillators in the loop to MaxOscs below. ; REQUIRE CrLf&" Need code to skip 1st N partials here "&CrLf MESSAGE; BEGIN "Synthesize" INTEGER IntIdx,Zosc,Nsamp,FpSinSiz; IFC UseFixedPoint THENC REQUIRE " Using fixed-point synthesis" MESSAGE; INTEGER ARRAY SynBuf[1:Nhop]; # Synthesis output buffer (for speed); INTEGER Y1,Y2,Y, Remain,Amp,Damp,Inc,Dinc,Phs; # Set up fixed-point number system (for maximum execution speed); DEFINE Nbits="14"; # No. bits to right of binary point; # Number of oscs summable is 2^(36-2*Nbits); DEFINE One = "(1 LSH Nbits)"; # A "1" in fixed-point; DEFINE R2Fp(x) = {((x) * One)}; # REAL to Fixed-Point (Fp), no round; DEFINE Fp2I(x) = {((x) ASH -Nbits)}; # Fp to INTEGER, no round; DEFINE Frac(x) = {((x) LAND (One-1))}; # Mask off fractional part; DEFINE FpFp(x,y)={((x)*(y) ASH -Nbits)}; # Fixed-point times fixed-point; ELSEC REQUIRE " Using floating-point synthesis"&CrLf MESSAGE; REAL ARRAY SynBuf[1:Nhop]; # Synthesis output buffer (for speed); REAL Y1,Y2,Y, Remain,Amp,Damp,Inc,Dinc,Phs; INTEGER PROCEDURE Floor(REAL x); RETURN(x); DEFINE One = "1"; DEFINE R2Fp(x) = {(x)}; DEFINE Fp2I(x) = { Floor(x) }; DEFINE Frac(x) = { (X-Floor(x)) }; DEFINE FpFp(x,y)={((x)*(y))}; ENDC IF Frame LEQ 1 THEN BEGIN "InitSine" REAL Pi,Dang; Pi <- 4*ATAN(1); Dang <- 2*Pi/SinSiz; FOR i <- 0 STEP 1 UNTIL SinSiz-1 DO SinBuf[i] <- R2Fp(SIN(i*Dang)); Mag <- SinSiz/Fs; END "InitSine"; FOR Zosc <- 1 STEP 1 UNTIL MaxOscs DO BEGIN "OscLoop" Amp <- R2Fp(PrvOscAmp[Zosc]); # Current amplitude (linear); Damp <- R2Fp(OscAmp[Zosc]-PrvOscAmp[Zosc])/Nhop; # Per-sample increment; IF Amp=Damp=0 # Only Noscs oscs are active; THEN CONTINUE "OscLoop"; # so avoid inactive ones; Inc <- R2Fp(Mag*PrvOscfrq[Zosc]); # Current table increment; Dinc <- R2Fp(Mag*(OscFrq[Zosc]-PrvOscfrq[Zosc])/Nhop); # Per-sample step; Phs <- OscPhs[Zosc]; # Current oscillator phase; FOR Nsamp <- 1 STEP 1 UNTIL Nhop DO # Synthesize one sinusoid; BEGIN "SynLoop" IntIdx <- Fp2I(Phs); # Sine table address; Remain <- Frac(Phs); # Linear interpolation amount; DEFINE SineMask = "(SinSiz-1)"; # For power-of-2 table length only; Y1 <- SinBuf[IntIdx LAND SineMask]; Y2 <- SinBuf[(IntIdx+1) LAND SineMask]; Y <- Y1 + FpFp(Remain,(Y2 - Y1)); SynBuf[Nsamp] <- SynBuf[Nsamp] + FpFp(Amp,Y); Amp <- Amp + Damp; Inc <- Inc + Dinc; Phs <- Phs + Inc; END "SynLoop"; FpSinSiz <- SinSiz*One; Phs <- (IF Phs GEQ FpSinSiz THEN Phs-FpSinSiz ELSE IF Phs<0 THEN Phs+FpSinSiz ELSE Phs); OscPhs[Zosc] <- Phs; END; FOR Nsamp <- Bp+1 STEP 1 UNTIL Bp+Nhop DO OutBuf[Nsamp] <- OutBuf[Nsamp] + (SynBuf[Nsamp-Bp]/One); # No rounding; END "Synthesize"; COMMENT Processing; GetWin(WinBuf,WinType,Nx); # Load window buffer; IF DoFlt THEN BEGIN FOR i <- 1 STEP 1 UNTIL Nh DO H[i] <- IC[i]; # Load filter into 1st part of buffer; TDpyEd(H,Nh,"Filter Impulse response"); !FFA(H,Nfft); # FFT filter impulse response; TDpyFFA(H,Nfft,"Filter spectrum",InF(Clock)); END; DBscl <- (10.0/LOG(10.0)); # Incredibly, this is not performed at compile time; Fs <- InF(Clock); Xp <- Bp <- Yp <- 0; # Input, OLA, and output sample pointers; PRINT("At time: "); DO BEGIN "RI" INTEGER i; PRINT(Cvfs(Xp/Fs)," "); ARRCLR(X); IF Xp+Nx>InF(#samps) THEN Nx <- InF(#samps) - Xp; Sandi(InF(Channel),Xp,Nx,X,InF(#samps),TRUE,InF(Pack)); Xp <- Xp + Nhop; Nhops <- Nhops + 1; Frame <- Xp/Nhop; Tdpyed(X,Nx,"Input frame "&CVS(Frame)); IF WinType>1 THEN FOR i <- 1 STEP 1 UNTIL Nx DO X[i] <- X[i] * WinBuf[i]; Tdpyed(X,Nx,"Windowed input frame "&CVS(Frame)); !FFA(X, Nfft); TDpyFFA(X,Nfft,"Windowed input frame spectrum",Fs); FOR i <- 1 STEP 2 UNTIL Nfft+1 DO BEGIN "DoFilter" INTEGER Ip1; REAL Xi,Hi,Xip1,Hip1; Ip1 <- i+1; Xi <- X[i]; Hi <- H[i]; Xip1 <- X[Ip1]; Hip1 <- H[Ip1]; XmagDB[(i+1) % 2] <- DBscl*LOG(Xi*Xi+Xip1*Xip1 MAX 1.0@-20); IF DoFlt THEN BEGIN X[i] <- Xi*Hi - Xip1*Hip1; X[Ip1] <- Xi*Hip1 + Xip1*Hi; END END "DoFilter"; IF SwapOut THEN BEGIN REAL ARRAY Xout[1:Nspec]; ARRTRAN(Xout,XmagDB); # Xout[1:257] gets clobbered if packing mode not 3; Tdpyed(Xout,Nspec,"*** OUTPUT DB (SWAP) SPECTRUM ***"); IF Sando(OutF(Channel),Yp,Nspec,Xout,OutH,Yp,TRUE,OutF(Pack)) THEN PRINT(" *** Sando unhappy ***",CrLf); PRINT(" * "); END; FindPartials(Nactive[Frame] <- MaxLins,XmagDB,LinAmpDB,LinFrq,Fs,MinSep, Thresh,Hyst,Nfft,Frame,MinWid,Fc1,Fc2); FOR i <- 1 Thru Nactive[Frame] DO LinAmp[i] <- 10^(LinAmpDB[i]/20)*SigScl; UpdateMap; # Unravel partials into consistent tracks (for synthsis); FOR CurOsc <- 1 Thru MaxOscs DO BEGIN "AmpsFrqs" Amps[CurOsc,Frame] <- OscAmp[CurOsc]; Frqs[CurOsc,Frame] <- OscFrq[CurOsc]; END "AmpsFrqs"; # TDpyFFA(X,Nfft,"Filtered windowed input frame spectrum",Fs); IF DoFlt THEN BEGIN "ola" !FFS(X, Nfft); # Inverse FFT (unnecessarily slow); Tdpyed(X,Nx+Nh,"Filtered windowed input frame"); FOR i <- Bp+1 STEP 1 UNTIL Bp+Nfft DO OutBuf[i] <- OutBuf[i] + X[i-Bp]; # For hack; END "ola"; IF DoSynth THEN BEGIN "callsynth" Tdpyed(OutBuf,Bp+Nhop,"OLA buffer BEFORE additive synthesis"); Synthesize(Nhop,Bp,Fs,Frame); # Generate synthesis up to sample Bp+Nhop in OutBuf; Tdpyed(OutBuf,Bp+Nhop,"OLA buffer AFTER additive synthesis"); END "callsynth"; IF NOT SwapOut THEN BEGIN Bp <- Bp + Nhop; IF Bp GEQ Nfft THEN IF DoOut THEN BEGIN "Wout" Tdpyed(OutBuf,Nfft,"*** OUTPUT OLA buffer BEFORE decimation"); Nout <- Decimate(OutBuf,Nfft,Ndec); # Downsample; Tdpyed(OutBuf,Nout,"*** OUTPUT OLA buffer AFTER decimation"); Sando(OutF(Channel),Yp,Nout,OutBuf,OutH,Yp,TRUE,OutF(Pack)); FOR i <- 1 STEP 1 UNTIL Nfft DO OutBuf[i] <- OutBuf[i+Nfft]; FOR i <- Nfft+1 STEP 1 UNTIL 2*Nfft DO OutBuf[i] <- 0; Bp <- Bp - Nfft; PRINT(" * "); END "Wout" END END "RI" UNTIL Xp GEQ InF(#samps) OR Trace=-999 OR Frame GEQ Nframes; TmpStr <- "PARSHL: From "&Idev&":"&Ifile&"; "& (IF DoFlt THEN "Filter="&Ffile ELSE NULL)&CrLf&Tab& (IF DoSynth THEN " AS" ELSE NULL)& " Nhops="&CVS(Nhops)& " Window="&WinStr& " Nfft="&CVS(Nfft)& " Nframe="&CVS(Nx)& " Nhop="&CVS(Nhop)& " Compression="&CVS(Ndec)&CrLf&Tab& " MinSpace="&Cvfs(MinSep)&"Hz"& " Lines="&CVS(MaxLins)& " Oscs="&CVS(MaxOscs)& " FirstFrq="&Cvfs(Fc1)&"Hz"& " LastFrq="&Cvfs(Fc2)&"Hz"&CrLf&Tab& " Thresh="&Cvfs(Thresh)&"dB"& " Hyst="&Cvfs(Hyst)&"dB"& " DFmax1="&Cvfs(DFmax1)&"Hz"& " UltDFmax="&Cvfs(DFmax2)&"Hz"&CrLf& " (+)"&Tab&InF(Text)&Crlf; IF DoOut THEN BEGIN "flush" Nout <- Decimate(OutBuf,Bp+Nh,Ndec); # Downsample; Sando(OutF(Channel),Yp,Nout,OutBuf,OutH,Yp,TRUE,OutF(Pack)); # Last piece; Sando(OutF(Channel),0,0,X,OutH,Yp,TRUE,OutF(Pack)); # Flush output buffer; WriteH(Head, OutF(Clock), OutF(Pack), OutF(#chans), OutF(#ticks), Maxamp, TmpStr); USETO (OutF(Channel), 1); ARRYOUT (OutF(Channel), Head [1], 128); RELEASE(InF(Channel)); RELEASE(OutF(Channel)); END "flush"; OutPartials(MaxOscs,Nframes,Amps,Frqs,Fs,Thresh); WriteH(Head, AmpF(Clock), AmpF(Pack), AmpF(#chans), AmpF(#ticks), Maxamp, TmpStr); USETO(AmpF(Channel),1); ARRYOUT(AmpF(Channel),Head[1],128); RELEASE(AmpF(Channel)); WriteH(Head, FrqF(Clock), FrqF(Pack), FrqF(#chans), FrqF(#ticks), Maxamp, TmpStr); USETO(FrqF(Channel),1); ARRYOUT(FrqF(Channel),Head[1],128); RELEASE(FrqF(Channel)); IF Trace THEN BEGIN REAL ARRAY TmpRA[1:Nframes]; FOR i <- 1 STEP 1 UNTIL Nframes DO TmpRA[i] <- Nactive[i]; DpyEd(TmpRA,Nframes,"Number of active partials versus frame number") END; END "ALAR"; PRINT("R R;REDUCE to convert Amplitudes and Frequencies to SEG functions",CrLf); PRINT("R R;SND2MF to convert Amplitudes and Frequencies to MERGE file format",CrLf); END "PARSHL".