Euler's Identity

Since is the algebraic expression of in terms of its rectangular coordinates, the corresponding expression in terms of its polar coordinates is

There is another, more powerful representation of
in terms of its
polar coordinates. In order to define it, we must introduce *Euler's
identity*:

A proof of Euler's identity is given in the next chapter. Before, the only algebraic representation of a complex number we had was , which fundamentally uses Cartesian (rectilinear) coordinates in the complex plane. Euler's identity gives us an alternative representation in terms of polar coordinates in the complex plane:

We'll call the

A corollary of Euler's identity is obtained by setting to get

This has been called the ``most beautiful formula in mathematics'' due to the extremely simple form in which the fundamental constants , and 0 , together with the elementary operations of addition, multiplication, exponentiation, and equality, all appear exactly once.

For another example of manipulating the polar form of a complex number, let's again verify , as we did above in Eq.(2.4), but this time using polar form:

As mentioned in §2.7, any complex expression can be conjugated by replacing by wherever it occurs. This implies , as used above. The same result can be obtained by using Euler's identity to expand into and negating the imaginary part to obtain , where we used also the fact that cosine is an

We can now easily add a fourth line to that set of examples:

Thus, for every .

Euler's identity can be used to derive formulas for sine and cosine in terms of :

Similarly, , and we obtain the following classic identities:

[How to cite this work] [Order a printed hardcopy] [Comment on this page via email]

Copyright ©

Center for Computer Research in Music and Acoustics (CCRMA), Stanford University