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Abstract

This section defines some of the basic terms involved in optimization techniques known as
gradient descent and Newton’s method. Terms defined include metric space, linear space, norm,
pseudo-norm, normed linear space, Banach space, Lp space, Hilbert space, functional, convex
norm, concave norm, local minimizer, global minimizer, and Taylor series expansion.
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1 Vector Space Concepts

Definition. A set X of objects is called a metric space if with any two points p and q of X there is
associated a real number d(p, q), called the distance from p to q, such that (a) d(p, q) > 0 if p 6= q;
d(p, p) = 0, (b) d(p, q) = d(q, p), (c) d(p, q) ≤ d(p, r) + d(r, q), for any r ∈ X [6].

Definition. A linear space is a set of “vectors” X together with a field of “scalars” S with an
addition operation + : X × X 7→ X, and a multiplication opration · taking S × X 7→ X, with the
following properties: If x, y, and z are in X, and α, β are in S, then

1. x + y = y + x.

2. x + (y + z) = (x + y) + z.

3. There exists ∅ in X such that 0 · x = ∅ for all x in X.

4. α(βx) = (αβ)x.

5. (α + β)x = αx + βx.

6. 1 · x = x.

7. α(x + y) = αx + αy.

The element ∅ is written as 0 thus coinciding with the notation for the real number zero. A linear
space is sometimes be called a linear vector space, or a vector space.

Definition. A normed linear space is a linear space X on which there is defined a real-valued
function of x ∈ X called a norm, denoted ||x ||, satisfying the following three properties:

1. ‖x ‖ ≥ 0, and ‖x ‖ = 0 ⇔ x = 0.

2. ‖ cx ‖ = |c| · ‖x ‖, c a scalar.

3. ‖x1 + x2 ‖ ≤ ‖x1 ‖ + ‖x2 ‖.

The functional ||x − y || serves as a distance function on X, so a normed linear space is also a
metric space.

Note that when X is the space of continuous complex functions on the unit circle in the complex
plane, the norm of a function is not changed when multiplied by a function of modulus 1 on the
unit circle. In signal processing terms, the norm is insensitive to multiplication by a unity-gain
allpass filter (also known as a Blaschke product).

Definition. A pseudo-norm is a real-valued function of x ∈ X satisfying the following three
properties:

1. ‖x ‖ ≥ 0, and x = 0 =⇒ ‖x ‖ = 0.

2. ‖ cx ‖ = |c| · ‖x ‖, c a scalar.

3. ‖x1 + x2 ‖ ≤ ‖x1 ‖ + ‖x2 ‖.
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A pseudo-norm differs from a norm in that the pseudo-norm can be zero for nonzero vectors
(functions).

Definition. A Banach Space is a complete normed linear space, that is, a normed linear space
in which every Cauchy sequence1 converges to an element of the space.

Definition. A function H(ejω) is said to belong to the space Lp if

∫ π

−π

∣

∣H(ejω)
∣

∣

p dω

2π
< ∞.

Definition. A function H(ejω) is said to belong to the space Hp if it is in Lp and if its analytic
continuation H(z) is analytic for |z| < 1. H(z) is said to be in H−p if H(z−1) ∈ Hp.

Theorem. (Riesz-Fischer) The Lp spaces are complete. Proof. See Royden [5], p. 117.

Definition. A Hilbert space is a Banach space with a symmetric bilinear inner product < x, y >
defined such that the inner product of a vector with itself is the square of its norm < x, x >= ||x ||2.

1.1 Specific Norms

The Lp norms are defined on the space Lp by

‖F ‖p
∆
=

(

1

2π

∫ π

−π

∣

∣F (ejω)
∣

∣

p dω

2π

)1/p

, p ≥ 1. (1)

Lp norms are technically pseudo-norms; if functions in Lp are replaced by equivalence classes
containing all functions equal almost everywhere, then a norm is obtained.

Since all practical desired frequency responses arising in digital filter design problems are
bounded on the unit circle, it follows that {H(ejω)} forms a Banach space under any Lp norm.

The weighted Lp norms are defined by

‖F ‖p
∆
=

(

1

2π

∫ π

−π

∣

∣F (ejω)
∣

∣

p
W (ejω)

dω

2π

) 1

p

, p ≥ 1, (2)

where W (ejω) is real, positive, and integrable. Typically,
∫

W = 1. If W (ejω) = 0 for a set of
nonzero measure, then a pseudo-norm results.

The case p = 2 gives the popular root mean square norm, and || · ||22 can be interpreted as the
total energy of F in many physical contexts.

An advantage of working in L2 is that the norm is provided by an inner product,

〈H, G〉
∆
=

∫ π

−π
H(ejω)G(ejω)

dω

2π
.

The norm of a vector H ∈ L2 is then given by

‖H ‖
∆
=
√

〈H, H〉.

1A sequence Hn(ejω) is said to be a Cauchy sequence if for each ε > 0 there is an N such that ||Hn(ejω) −
Hm(ejω) || < ε for all n and m larger than N .
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As p approaches infinity in Eq. (1), the error measure is dominated by the largest values of
|F (ejω)|. Accordingly, it is customary to define

‖F ‖∞
∆
= max

−π<ω≤π

∣

∣F (ejω)
∣

∣ , (3)

and this is often called the Chebyshev or uniform norm.
Suppose the L1 norm of F (ejω) is finite, and let

f(n)
∆
=

1

2π

∫ π

−π
F (ejω)ejωn dω

2π

denote the Fourier coefficients of F (ejω). When F (ejω) is a filter frequency response, f(n) is the
corresponding impulse response. The filter F is said to be causal if f(n) = 0 for n < 0.

The norms for impulse response sequences || f ||p are defined in a manner exactly analogous
with the frequency response norms ||F ||p, viz.,

‖ f ‖p
∆
=

(

∞
∑

n=−∞

|f(n)|p
) 1

p

.

These time-domain norms are called lp norms.
The Lp and lp norms are strictly concave functionals for 1 < p < ∞ (see below).
By Parseval’s theorem, we have ||F ||2 = || f ||2, i.e., the Lp and lp norms are the same for

p = 2.
The Frobenious norm of an m × n matrix A is defined as

‖A ‖F
∆
=

√

√

√

√

m
∑

i=1

n
∑

j=1

|aij |
2.

That is, the Frobenious norm is the L2 norm applied to the elements of the matrix. For this norm
there exists the following.

Theorem. The unique m×n rank k matrix B which minimizes ||A−B ||F is given by UΣkV
∗,

where A = UΣV ∗ is a singular value decomposition of A, and Σk is formed from Σ by setting to
zero all but the k largest singular values.

Proof. See Golub and Kahan [3].
The induced norm of a matrix A is defined in terms of the norm defined for the vectors x on

which it operates,

‖A ‖
∆
= sup

x

‖Ax ‖

‖x ‖

For the L2 norm, we have

‖A ‖2

2 = sup
x

xT AT Ax

xT x
,

and this is called the spectral norm of the matrix A.
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The Hankel matrix corresponding to a time series f is defined by Γ(f)[i, j]
∆
= f(i + j), i.e.,

Γ(f)
∆
=











f(0) f(1) f(2) · · ·
f(1) f(2)
f(2)

...











.

Note that the Hankel matrix involves only causal components of the time series.
The Hankel norm of a filter frequency response is defined as the spectral norm of the Hankel

matrix of its impulse response,
∥

∥F (ejω)
∥

∥

H

∆
= ‖Γ(f) ‖2 .

The Hankel norm is truly a norm only if H(z) ∈ H−p, i.e., if it is causal. For noncausal filters, it
is a pseudo-norm.

If F is strictly stable, then |F (ejω)| is finite for all ω, and all norms defined thus far are finite.
Also, the Hankel matrix Γ(f) is a bounded linear operator in this case.

The Hankel norm is bounded below by the L2 norm, and bounded above by the L∞ norm [1],

‖F ‖2 ≤ ‖F ‖H ≤ ‖F ‖∞ ,

with equality iff F is an allpass filter (i.e., |F (ejω)| constant).

2 Concavity (Convexity)

Definition. A set S is said to be concave if for every vector x and y in S, λx + (1 − λ)y is in S
for all 0 ≤ λ ≤ 1. In other words, all points on the line between two points of S lie in S.

Definition. A functional is a mapping from a vector space to the real numbers <.
Thus, for example, every norm is a functional.

Definition. A linear functional is a functional f such that for each x and y in the linear space
X, and for all scalars α and β, we have f(αx + βy) = αf(x) + βf(y).

Definition. The norm of a linear functional f is defined on the normed linear space X by

‖ f ‖
∆
= sup

x∈X

|f(x)|

‖x ‖
.

Definition. A functional f defined on a concave subset S of a vector space X is said to be
concave on S if for every vector x and y in S,

λf(x) + (1 − λ)f(y) ≥ f (λx + (1 − λ)y) , 0 ≤ λ ≤ 1.

A concave functional has the property that its values along a line segment lie below or on the line
between its values at the end points. The functional is strictly concave on S if strict inequality
holds above for λ ∈ (0, 1). Finally, f is uniformly concave on S if there exists c > 0 such that for
all x, y ∈ S,

λf(x) + (1 − λ)f(y) − f (λx + (1 − λ)y) ≥ cλ(1 − λ) ‖x − y ‖2 , 0 ≤ λ ≤ 1.
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We have
Uniformly Concave =⇒ Strictly Concave =⇒ Concave

Definition. A local minimizer of a real-valued function f(x) is any x∗ such that f(x∗) < f(x)
in some neighborhood of x.

Definition. A global minimizer of a real-valued function f(x) on a set S is any x∗ ∈ S such
that f(x∗) < f(x) for all x ∈ S.

Definition. A cluster point x of a sequence xn is any point such that every neighborhood of
x contains at least one xn.

Definition. The concave hull of a set S in a metric space is the smallest concave set containing
S.

2.1 Concave Norms

A desirable property of the error norm minimized by a filter-design technique is concavity of the
error norm with respect to the filter coefficients. When this holds, the error surface “looks like a
bowl,” and the global minimum can be found by iteratively moving the parameters in the “downhill”
(negative gradient) direction. The advantages of concavity are evident from the following classical
results.

Theorem. If X is a vector space, S a concave subset of X, and f a concave functional on
S, then any local minimizer of f is a global minimizer of f in S.

Theorem. If X is a normed linear space, S a concave subset of X, and f a strictly concave
functional on S, then f has at most one minimizer in S.

Theorem. Let S be a closed and bounded subset of <n. If f : <n 7→ <1 is continuous on S,
then f has at least one minimizer in S.

Theorem (2.1) bears directly on the existence of a solution to the general filter design problem in
the frequency domain. Replacing “closed and bounded” with “compact”, it becomes true for a func-
tional on an arbitrary metric space (Rudin [6], Thm. 14). (In <n, “compact” is equivalent to “closed
and bounded” [5].) Theorem (2.1) implies only compactness of Θ̂ = {b̂0, . . . , b̂nb

, â1, . . . , âna} and
continuity of the error norm J(θ̂) on Θ̂ need to be shown to prove existence of a solution to the
general frequency-domain filter design problem.

3 Gradient Descent

Concavity is valuable in connection with the Gradient Method of minimizing J(θ̂) with respect to
θ̂.

Definition. The gradient of the error measure J(θ̂) is defined as the N̂ × 1 column vector

J ′(θ̂)
∆
=

∂J(θ)

∂θ
(θ̂)

∆
=

[

∂

∂θ
J(θ)b0

(

b̂0

)

, . . . ,
∂

∂θ
J(θ)bnb

(

b̂nb

)

,
∂

∂θ
J(θ)a1 (â1) , . . . ,

∂

∂θ
J(θ)ana (âna)

]T

.

Definition. The Gradient Method (Cauchy) is defined as follows.
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Given θ̂0 ∈ Θ̂, compute

θ̂n+1 = θ̂n − tnJ ′(θ̂n), n = 1, 2, . . . ,

where J ′(θ̂n) is the gradient of J at θ̂n, and tn ∈ < is chosen as the smallest nonnegative local
minimizer of

Φn(t)
∆
= J

(

θ̂n − tJ ′(θ̂n)
)

.

Cauchy originally proposed to find the value of tn ≥ 0 which gave a global minimum of Φn(t). This,
however, is not always feasible in practice.

Some general results regarding the Gradient Method are given below.
Theorem. If θ̂0 is a local minimizer of J(θ̂), and J ′(θ̂0) exists, then J ′(θ̂0) = 0.
Theorem. The gradient method is a descent method, i.e., J(θ̂n+1) ≤ J(θ̂n).

Definition. J : Θ̂ → <1, Θ̂ ⊂ <N̂ , is said to be in the class Ck(Θ̂) if all kth order partial
derivatives of J(θ̂) with respect to the components of θ̂ are continuous on Θ̂.

Definition. The Hessian J ′′(θ̂) of J at θ̂ is defined as the matrix of second-order partial
derivatives,

J ′′(θ̂)[i, j]
∆
=

∂2J(θ)

∂θ[i]∂θ[j]
(θ̂),

where θ[i] denotes the ith component of θ, i = 1, . . . , N̂ = na +nb +1, and [i, j] denotes the matrix
entry at the ith row and jth column.

The Hessian of every element of C2(Θ̂) is a symmetric matrix [7]. This is because continuous
second-order partials satisfy

∂2

∂x1∂x2

=
∂2

∂x2∂x1

.

Theorem. If J ∈ C1(Θ̂), then any cluster point θ̂∞ of the gradient sequence θ̂n is necessarily
a stationary point , i.e., J ′(θ̂∞) = 0.

Theorem. Let Θ̂ denote the concave hull of Θ̂ ⊂ <N̂ . If J ∈ C2(Θ̂), and there exist positive
constants c and C such that

c ‖ η ‖2 ≤ ηT J ′′(θ̂)η ≤ C ‖ η ‖2 , (4)

for all θ̂ ∈ Θ̂ and for all η ∈ <N̂ , then the gradient method beginning with any point in Θ̂ converges

to a point θ̂∗. Moreover, θ̂∗ is the unique global minimizer of J in <N̂ .
By the norm equivalence theorem [4], Eq. (4) is satisfied whenever J ′′(θ̂) is a norm on Θ̂ for

each θ̂ ∈ Θ̂. Since J ′′ belongs to C2(Θ̂), it is a symmetric matrix. It is also bounded since it is
continuous over a compact set. Thus a sufficient requirement is that J ′′ be positive definite on Θ̂.
Positive definiteness of J ′′ can be viewed as “positive curvature” of J at each point of Θ̂ which
corresponds to strict concavity of J on Θ̂.

4 Taylor’s Theorem

Theorem. (Taylor) Every functional J : <N̂ 7→ <1 in C2(<
N̂ ) has the representation

J(θ̂ + η) = J(θ̂) + J ′(θ̂)η +
1

2
ηT J ′′(θ̂ + λη)η
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for some λ between 0 and 1, where J ′(θ̂) is the N̂ × 1 gradient vector evaluated at θ̂ ∈ <n, and
J ′′(θ̂) is the N̂ × N̂ Hessian matrix of J at θ̂, i.e.,

J ′(θ̂)
∆
=

∂J(θ)

∂θ
(θ̂) (5)

J ′′(θ̂)
∆
=

∂2J(θ)

∂θ̂2
(θ̂) (6)

Proof. See Goldstein [2] p. 119. The Taylor infinite series is treated in Williamson and Crowell
[7]. The present form is typically more useful for computing bounds on the error incurred by
neglecting higher order terms in the Taylor expansion.

5 Newton’s Method

The gradient method is based on the first-order term in the Taylor expansion for J(θ̂). By taking
a second-order term as well and solving the quadratic minimization problem iteratively, Newton’s
method for functional minimization is obtained. Essentially, Newton’s method requires the error
surface to be close to quadratic, and its effectiveness is directly tied to the accuracy of this assump-
tion. For most problems, the error surface can be well approximated by a quadratic form near the
solution. For this reason, Newton’s method tends to give very rapid (“quadratic”) convergence in
the last stages of iteration.

Newton’s method is derived as follows: The Taylor expansion of J(θ) about θ̂ gives

J(θ̂∗) = J(θ̂) + J ′(θ̂)
(

θ̂∗ − θ̂
)

+
1

2

(

θ̂∗ − θ̂
)T

J ′′
(

λθ̂∗ + λθ̂
)(

θ̂∗ − θ̂
)

,

for some 0 ≤ λ ≤ 1, where λ
∆
= 1 − λ. It is now necessary to assume that J ′′

(

λθ̂∗ + λθ̂
)

≈ J ′′(θ̂).

Differentiating with respect to θ̂∗, where J(θ̂∗) is presumed to be minimum, this becomes

0 = 0 + J ′(θ̂) + J ′′(θ̂)
(

θ̂∗ − θ̂
)

.

Solving for θ̂∗ yields
θ̂∗ = θ̂ − [J ′′(θ̂)]−1J ′(θ̂). (7)

Applying Eq. (7) iteratively, we obtain the following.

Definition. Newton’s method is defined by

θ̂n+1 = θ̂n − [J ′′(θ̂n)]−1J ′(θ̂n), n = 1, 2, . . . , (8)

where θ̂0 is given as an initial condition.

When J ′′
(

λθ̂∗ + λθ̂
)

= J ′′(θ̂), the answer is obtained after the first iteration. In particular,

when the error surface J(θ̂) is a quadratic form in θ̂, Newton’s method produces θ̂∗ in one iteration,
i.e., θ̂1 = θ̂∗ for every θ̂0.

For Newton’s method, there is the following general result on the existence of a critical point
(i.e., a point at which the gradient vanishes) within a sphere of a Banach space.
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Theorem. (Kantorovich) Let θ̂0 be a point in Θ̂ for which [J ′′(θ̂0)]
−1 exists, and set

R0
∆
=
∥

∥

∥ [J ′′(θ̂0)]
−1J ′(θ̂0)

∥

∥

∥ .

Let S denote the sphere {θ̂ ∈ Θ̂ such that || θ̂ − θ̂0 || ≤ 2R0}. Set C0 = || J ′′(θ̂0) ||. If there exists a
number M such that

∥

∥

∥
J ′′(θ̂1) − J ′′(θ̂2)

∥

∥

∥
≤

M
∥

∥

∥
θ̂1 − θ̂2

∥

∥

∥

2
,

for θ̂1, θ̂2 in S, and such that C0R0M
∆
= h0 ≤ 1/2, then J ′(θ̂) = 0 for some θ̂ in S, and the Newton

sequence Eq. (8) converges to it. Furthermore, the rate of convergence is quadratic, satisfying

∥

∥

∥
θ̂∗ − θ̂n

∥

∥

∥
≤ 2−n+1(2h0)

2n−1R0.

Proof. See Goldstein [2], p. 143.
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