Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

MIMO Paraunitary Condition

With the above definition for paraconjugation of a MIMO transfer-function matrix, we may generalize the MIMO allpass condition Eq.(C.2) to the entire $ z$ plane as follows:



Theorem: Every lossless $ p\times q$ transfer function matrix $ \mathbf{H}(z)$ is paraunitary, i.e.,

$\displaystyle {\tilde{\mathbf{H}}}(z) \mathbf{H}(z) = \mathbf{I}_q
$

By construction, every paraunitary matrix transfer function is unitary on the unit circle for all $ \omega$ . Away from the unit circle, the paraconjugate $ {\tilde{\mathbf{H}}}(z)$ is the unique analytic continuation of $ \overline{\mathbf{H}^T(\ejo )}$ (the Hermitian transpose of $ \mathbf{H}(\ejo )$ ).

Example: The normalized DFT matrix is an $ N\times N$ order zero paraunitary transformation. This is because the normalized DFT matrix, $ \mathbf{W}=[W_N^{nk}]/\sqrt{N},\,n,k=0,\ldots,N-1$ , where $ W_N\isdef
e^{-j2\pi/N}$ , is a unitary matrix:

$\displaystyle \frac{\mathbf{W}^\ast}{\sqrt{N}} \frac{\mathbf{W}}{\sqrt{N}} = \mathbf{I}_N
$


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Introduction to Digital Filters with Audio Applications'', by Julius O. Smith III, (September 2007 Edition)
Copyright © 2024-09-03 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA