Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Implementation of Repeated Poles

Fig.9.5 illustrates an efficient implementation of terms due to a repeated pole with multiplicity three, contributing the additive terms

$\displaystyle \frac{r_1}{1-pz^{-1}}
+ \frac{r_2}{(1-pz^{-1})^2}
+ \frac{r_3}{(1-pz^{-1})^3}
$

to the transfer function. Note that, using this approach, the total number of poles implemented equals the total number of poles of the system. For clarity, a single real (or complex) pole is shown. Implementing a repeated complex-conjugate pair as a repeated real second-order section is analogous.

Figure 9.5: Implementation of a pole $ p$ repeated three times.
\includegraphics{eps/repeatedpole}


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Introduction to Digital Filters with Audio Applications'', by Julius O. Smith III, (September 2007 Edition)
Copyright © 2023-09-17 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA