Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Bilinear Transformation

The bilinear transform may be defined by

$\displaystyle s$ $\displaystyle =$ $\displaystyle c\frac{1-z^{-1}}{1+z^{-1}}\protect$ (I.9)
$\displaystyle z^{-1}$ $\displaystyle =$ $\displaystyle \frac{1-s/c}{1+s/c}\protect$ (I.10)

where $ c$ is an arbitrary positive constant that we may set to map one analog frequency precisely to one digital frequency. In the case of a lowpass or highpass filter, $ c$ is typically used to set the cut-off frequency to be identical in the analog and digital cases.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Introduction to Digital Filters with Audio Applications'', by Julius O. Smith III, (September 2007 Edition).
Copyright © 2014-03-23 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA