
Signal Processing in Faust and Pd

Julius Smith

REALSIMPLE Project∗

Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music
Stanford University

Stanford, California 94305

Abstract

The Faust programming language is a high-level language for digital signal processing with
special support for real-time plugin environments such as Pure Data (Pd), LADSPA, and many
others. This tutorial describes how to make Pd, LADSPA, and VST plugins, focusing on a
simple example of white noise filtered by a variable resonator. Additionally, generation of an
8-voiced MIDI synthesizer from Faust source and the faust2pd script is illustrated.

Contents

1 Note 3

2 Introduction 3
2.1 Installing Faust . 3
2.2 Installing Faust Examples . 4

3 A Simple Faust Program 4

4 Generating Faust Block Diagrams 4

5 Testing a Faust Filter Section 8

6 A Look at the Generated C++ code 9

7 Generating a Pure Data (Pd) Plugin 9
7.1 Generating the Pd Plugin . 11
7.2 Generating a Pd Plugin-Wrapper Abstraction . 13
7.3 A Pd Test Patch for the Plugin Wrapper . 14

8 Generating a LADSPA Plugin via Faust 14

∗Work supported by the Wallenberg Global Learning Network

1

http://ccrma.stanford.edu/~{}jos
http://ccrma.stanford.edu/
http://www.stanford.edu/group/Music/
http://www.stanford.edu/
http://www.wgln.org/

9 Generating a VST Plugin via Faust 16
9.1 Bypassing Windows . 19

10 Generating a MIDI Synthesizer for Pd 19

11 MIDI Synthesizer Test Patch 20

2

1 Note

This document is somewhat out of date. A more up-to-date extended subset is http://ccrma.stanford.edu/~jos/spf/

2 Introduction

This module describes use of the Faust programming language1 by Yann Orlarey [2, 1] to generate
real-time DSP applications and plugins from a high-level specification. In addition to generating
efficient inner loops, Faust supports Graphical User Interface (GUI) specification in the source
code, and can emit code for various application and plugin environments.2 Moreover, Faust can
generate easy-to-read block diagrams directly from the source, illustrating signal flow and processing
graphically. This module focuses on generating pd, LADSPA, and VST plugins from a simple Faust
program specifying a resonator driven by white noise.

2.1 Installing Faust

On a Fedora Linux system (and presumably many other Linux distributions), say

yum search faust

to find out about the Faust-related packages. On a Mac with MacPorts installed, say this:

port search faust

At the time of this writing (5/23/2010), the two packages available on the Mac are faust and
pure-faust. Thus, to install the main Faust package, say port install faust (on your Mac).
On Fedora 11 Linux, at the time of this writing, the available packages are faust, faust-doc,
faust-kate, and faust-tools.

The versions in the Linux and MacPorts distributions tend to be significantly behind the latest.
To check out the latest CVS version at sourceforge, say

cvs -z3 -d:pserver:anonymous@faudiostream.cvs.sourceforge.net:/cvsroot/faudiostream co .

I have always done this and find it to be generally quite reliable. From time to time, update and
reinstall as follows:

cd Faust

cvs -q update

make

sudo make install

1The Faust home page is http://faust.grame.fr/. Faust is included in the Planet CCRMA distribution
(http://ccrma.stanford.edu/planetccrma/software/). The examples in this module have been tested with Faust
version 0.9.9.2a2.

2Faust “architecture files” and plugin-generators are currently available for Max/MSP, Pd [3, 1], VST, LADSPA,
ALSA-GTK, JACK-GTK, and SuperCollider, as of this writing.

3

http://ccrma.stanford.edu/~jos/spf/
http://faust.grame.fr/
http://ccrma.stanford.edu/planetccrma/software/

2.2 Installing Faust Examples

The software discussed in this module can be downloaded as a compressed tarball:

http://ccrma.stanford.edu/~jos/faust/faustpd.tar.gz

Additional software and more advanced examples can be found in [6].

3 A Simple Faust Program

Figure 1 lists a minimal Faust program specifying the constant-peak-gain resonator discussed in
[5]. This module does not cover the Faust language itself, so the Faust Tutorial,3 or equivalent,
should be considered prerequisite reading. We will summarize briefly, however, the Faust operators
relevant to this example: signal processing blocks are connected in series via a colon (:), and
feedback is indicated by a tilde (˜). The colon and tilde operators act on “block diagrams” to
create a larger block diagram. There are also signal operators. For example, a unit-sample delay
is indicated by appending a prime (’) after a signal variable; thus, x’ expands to x : MEM and
indicates a signal obtained by delaying the signal x by one sample.

Function application applies to operator symbols as well as names; thus, for example, +(x)
expands to ,x : +, and *(x) expands to ,x : *, where denotes a simple “wire”. There is a
special unary minus in Faust (as of release 0.9.9.4), so that -x is equivalent to 0 - x. However,
-(x) still expands to ,x : -, which is a blockdiagram that subtracts signal x from the input signal
on .

The with block provides local definitions in the context of the process definition.4

Other aspects of the language used in this example should be fairly readable to those having a
typical programming background. 5

Constants such as RR in Fig. 1 are better thought of as constant signals. As a result, operators
such as * (multiplication) conceptually act only on signals. Thus, the expression 2*x denotes the
constant-signal 2, 2, 2, . . . muliplied pointwise by the signal x. The Faust compiler does a good
job of optimizing expressions so that operations are not repeated unnecessarily at run time. In
summary, a Faust expression expands into a block diagram which processes causal signals,6 some
of which may be constant signals.

4 Generating Faust Block Diagrams

When learning the Faust language, it can be helpful to generate a block diagram using the -svg

option. For example, the command

> faust -svg cpgr.dsp

3http://www.grame.fr/pub/faust tutorial.pdf
4A “with” block is not required, but it minimizes “global name pollution.” In other words, a definition and its

associated with block are more analogous to a C function definition in which local variables may be used. Faust
statements can be in any order, so multiple definitions of the same symbol are not allowed. A with block can thus
be used also to override global definitions in a local context.

5Facility with basic C++ programming is also assumed for this module.
6A causal signal is any signal that is zero before time 0.

4

http://ccrma.stanford.edu/~jos/faust/faustpd.tar.gz
http://www.grame.fr/pub/faust_tutorial.pdf

process = firpart : + ~ feedback

with {

bw = 100; fr = 1000; g = 1; // parameters - see caption

SR = fconstant(int fSamplingFreq, <math.h>); // Faust fn

pi = 4*atan(1.0); // circumference over diameter

R = exp(0-pi*bw/SR); // pole radius [0 required]

A = 2*pi*fr/SR; // pole angle (radians)

RR = R*R;

firpart(x) = (x - x’’) * g * ((1-RR)/2);

// time-domain coefficients ASSUMING ONE PIPELINE DELAY:

feedback(v) = 0 + 2*R*cos(A)*v - RR*v’;

};

Figure 1: Faust program specifying a constant-peak-gain resonator. Input parameters are
the resonance frequency fr (Hz), resonance bandwidth bw (Hz), and the desired peak-gain
g.

creates a subdirectory of the current working directory named cpgr-svg which contains a “scalable
vector graphics” (.svg) file for each block-diagram expression in cpgr.dsp.7 For this example,
there is a block diagram generated for the process line, and for each of the last five lines in the
with clause (not counting the comment).

Figure 2 shows the block diagram generated for the main process block from Fig. 1:

process = firpart : + ~ feedback

The dot on each block indicates its standard orientation (analogous to a “pin 1” indicator on an
integrated circuit chip). The small open square at the beginning of the feedback loop indicates a
unit sample delay introduced by creating a signal loop. Needless to say, it is important to keep
track of such added delays in a feedback loop.

Figure 3 shows the block diagram generated for the firpart abstraction:

firpart(x) = (x - x’’) * g * ((1-RR)/2);

Similarly, Fig. 4 shows the block diagram generated for the feedback path:

feedback(v) = 0 + 2*R*cos(A)*v - RR*v’;

If not for the added sample of delay in the feedback loop (indicated by the small open square in
Fig. 2), the feedback-path processing would have been instead 0 + 2*R*cos(A)*v’ - RR*v’’.

Note that the block diagrams are drawn as though all details of the expression are to be evaluated
every sample. However, the Faust compiler instead computes constant expressions at init time
and allocates memory locations for them. More generally, the Faust compiler separately optimizes
full-rate signals at the sampling rate (calculated in the inner loop), slowly varying signals (updated
at the “buffer rate” outside of the inner loop—currently every 64 samples), and constant signals
(evaluated once at initialization time).

7The faust2firefox script can be used to generate SVG block diagrams and open them in the Firefox web
browser.

5

firpart

+

feedback

process

Figure 2: Main process block for the constant-peak-gain resonator.

x

x

x mem mem

-

1

g

*

1

g

RR

-

2

/

*

firpart

Figure 3: FIR-part ((x - x’’) * g * ((1-RR)/2)) in Faust.

6

x

0

2

R

*

A cos

*

x

*

+

RR

x mem

*

-

feedback

Figure 4: Feedback block (0 + 2*R*cos(A)*x - RR*x’) in Faust.

7

5 Testing a Faust Filter Section

It takes a bit of experience to write a correct program on the first try. Therefore, we often have
to debug our programs by some technique. Typically, inspecting the automatically generated block
diagrams and listening to the results are tools enough for debugging Faust source code. However,
sometimes it is useful to verify the output signal(s) in more detail. For this purpose, Faust has
a useful “architecture file” named plot.cpp which results in generation of a main C++ program
that simply prints the output signal(s) to the standard output. This printout can be used to plot
the output (using, e.g., gnuplot) or compare it to the output of some other program. This section
gives an example of comparing the impulse response of the filter in Fig. 1 to the output of a matlab
version. Specifically, we will compare the printed output from the Faust-generated program to the
output of the matlab test program shown in Fig. 5.

SR = 44100; % Sampling rate

fr = 1000; % Resonant frequency

bw = 100; % Bandwidth

g = 1; % Peak gain

N = 10; % Samples to generate in test

R = exp(-pi*bw/SR); % pole radius

A = 2*pi*fr/SR; % pole angle (radians)

firpart = g * [1 0 -1] * (1-R^2)/2;

feedback = [1 -2*R*cos(A) R^2]; % freq-domain coeffs

freqz(firpart,feedback); % freq-response display

format long;

h = impz(firpart,feedback,N) % print impulse response

Figure 5: Constant Peak-Gain Resonator—matlab version

In our Faust program, we need a test impulse, e.g.,

process = 1-1’ : firpart : + ~ feedback

with { ... <same as before> ... };

The signal 1 = [1, 1, 1, . . .] is the unit-step signal consisting of all ones, and 1’ = [0, 1, 1, . . .] is the
unit step delayed by one sample. Therefore, 1-1’ is the impulse signal δ = [1, 0, 0, . . .].

Suppose the file cpgrir.dsp (“Constant-Peak-Gain Resonator Impulse-Response”) contains
our test Faust program. Then we can generate the impulse-response printout as follows at the
command line:

> faust -a plot.cpp -o cpgrir-print.cpp cpgrir.dsp

> g++ -Wall -g -lm -lpthread cpgrir-print.cpp -o cpgrir-print

> cpgrir-print -n 10

(The first two lines above are done by the faust2plot utility distributed with Faust.) The first
line generates the C++ program cpgrir.cpp from the Faust source file cpgrir.dsp using the
architecture file plot.cpp. The second line compiles the C++ file to produce the executable
program cpgrir-print. Finally, the third line generates and prints the first 10 samples of the

8

output signal (anything more than the number of filter coefficients is usually enough), which is our
desired impulse response:8

h = [0.00707331 0.0139039 0.013284

0.012405 0.0112882 0.00995947

0.00844865 0.00678877 0.00501544

0.00316602 ...]

The matlab version produces the following impulse response:

h =

[0.00707328459864603 0.01390382707778288 0.01328399389241600

0.01240496991806334 0.01128815312793390 0.00995943544693653

0.00844861689634155 0.00678874919376101 0.00501542304704597

0.00316601431505539 ...]

Since matlab uses double-precision floating-point while Faust only supports single-precision floats,
we will normally see differences after six or so decimal digits.

6 A Look at the Generated C++ code

Running Faust with no architecture file, e.g.,

> faust cpgrir.dsp

causes the C++ signal-processing code to be printed on the standard output, as shown for this
example in Fig. 6. Notice how the constant subexpressions are computed only once per instance
in the instanceInit member function. Also, even in instanceInit, which is only called once,
repeated computation of R2 is avoided by use of the temporary variable fConst1, and division by
2 is converted to multiplication by 0.5.

7 Generating a Pure Data (Pd) Plugin

This section illustrates making a pd plugin using the Faust architecture file puredata.cpp, and
Albert Gräf’s faust2pd script (version 0.9.8.6—also included in the Planet CCRMA distribution).
Familiarity with Pure Data (the pd program by Miller Puckette [3, 4]) is assumed in this section.
Also, the original faust2pd paper [1] contains the most complete description of faust2pd at the
time of this writing.

Even if one prefers writing real-time signal-processing programs in C++, C, or assembly lan-
guage,9 the ability to generate user interfaces and plugins with Faust is compellingly useful.

8This specific output was obtained by editing cpgrir-print.cpp to replace %8f by %g in the print statements, in
order to print more significant digits.

9In many cases the signal processing in Faust can occur within a “foreign function” written in C or C++ and
used as a “black box” within Faust, like the cos() function in Fig. 5 on page 8. However, this approach is presently
limited because foreign functions can have only float and int argument types, and they can only return a float

each sample. It is possible to set up persistent state in a foreign function by means of static variables, but this does
not generalize easily to multiple instances. Therefore, more general extensions may require direct modification of the
generated C++, which usually obsoletes the Faust source code.

9

class mydsp : public dsp {

private:

float fConst0; float fConst1;

int iVec0[2]; float fConst2;

int iVec1[3]; float fConst3; float fRec0[3];

public:

virtual int getNumInputs() { return 0; }

virtual int getNumOutputs() { return 1; }

static void classInit(int samplingFreq) { }

virtual void instanceInit(int samplingFreq) {

fSamplingFreq = samplingFreq;

fConst0 = expf((0 - (314.159271f / fSamplingFreq)));

fConst1 = (fConst0 * fConst0);

for (int i=0; i<2; i++) iVec0[i] = 0;

fConst2 = ((2 * fConst0) * cosf((2764.601562f

/ fSamplingFreq)));

for (int i=0; i<3; i++) iVec1[i] = 0;

fConst3 = (0.500000f * (1 - fConst1));

for (int i=0; i<3; i++) fRec0[i] = 0; }

virtual void init(int samplingFreq) {

classInit(samplingFreq);

instanceInit(samplingFreq); }

virtual void buildUserInterface(UI* interface) {

interface->openVerticalBox("faust");

interface->closeBox(); }

virtual void compute (int count, float** input,

float** output) {

float* output0 = output[0];

for (int i=0; i<count; i++) {

iVec0[0] = 1;

int iTemp0 = iVec0[1];

iVec1[0] = (1 - iTemp0);

fRec0[0] = (((fConst3 * (1 - (iTemp0 + iVec1[2])))

+ (fConst2 * fRec0[1]))

- (fConst1 * fRec0[2]));

output0[i] = fRec0[0];

// post processing

fRec0[2] = fRec0[1]; fRec0[1] = fRec0[0];

iVec1[2] = iVec1[1]; iVec1[1] = iVec1[0];

iVec0[1] = iVec0[0];

}

}

};

Figure 6: C++ code emitted by the shell command
faust cpgrir.dsp (and reformatted slightly).

10

To illustrate automatic generation of user-interface controls, we will add two “numeric entry”
fields and one “horizontal slider” to our example of Fig. 1. These controls will allow the plugin user
to vary the center-frequency, bandwidth, and peak gain of the constant-peak-gain resonator in real
time. A complete listing of cpgrui.dsp (“Constant-Peak-Gain Resonator with User Interface”)
appears in Fig. 7.

declare name "Constant-Peak-Gain Resonator";

declare author "Julius Smith";

declare version "1.0";

declare license "GPL";

/* Controls */

fr = nentry("frequency (Hz)", 1000, 20, 20000, 1);

bw = nentry("bandwidth (Hz)", 100, 20, 20000, 10);

g = hslider("peak gain", 1, 0, 10, 0.01);

/* Constants (Faust provides these in math.lib) */

SR = fconstant(int fSamplingFreq, <math.h>);

PI = 3.1415926535897932385;

/* The resonator */

process = firpart : + ~ feedback

with {

R = exp(0-PI*bw/SR); // pole radius [0 required]

A = 2*PI*fr/SR; // pole angle (radians)

RR = R*R;

firpart(x) = (x - x’’) * (g) * ((1-RR)/2);

// time-domain coeffs ASSUMING ONE PIPELINE DELAY:

feedback(v) = 0 + 2*R*cos(A)*v - RR*v’;

};

Figure 7: Listing of cpgrui.dsp—a Faust program specifying a constant-peak-gain res-
onator with three user controls. Also shown are typical header declarations.

7.1 Generating the Pd Plugin

The plugin may be compiled on a Linux system as follows:

> faust -a puredata.cpp -o cpgrui-pd.cpp cpgrui.dsp

> g++ -DPD -Wall -g -shared -Dmydsp=cpgrui \

-o cpgrui~.pd_linux cpgrui-pd.cpp

The first line uses faust to generate a compilable .cpp file, this time using the architecture file
puredata.cpp which encapsulates the pd plugin API. The second line (which wraps) compiles
cpgrui-pd.cpp to produce the dynamically loadable (binary) object file cpgrui~.pd linux, which
is our signal-processing plugin for pd. Such pd plugins are also called externals (externally compiled
loadable modules). The filename extension “.pd linux” indicates that the plugin was compiled on
a Linux system.

11

Figure 8 shows an example test patch,10 named cpgrui~-help.pd,11 written (manually) for the
generated plugin. By convention, the left inlet and outlet of a Faust-generated plugin correspond
to control info and general-purpose messages. Any remaining inlets and outlets are signals.

noise~

dac~print

peak-gain

frequency-Hz

frequency-Hz 500

bandwidth-Hz

frequency-Hz 300bandwidth-Hz 200

bandwidth-Hz 300

loadbang

active 0

active 1

;
pd dsp 0

;
pd dsp 1

cpgrui~

peak-gain 0.1

peak-gain 0.5

peak-gain $1

0.787

peak-gain

Figure 8: Pure Data test patch cpgrui~-help.pd exercising features of the external pd
plugin cpgrui~ generated by Faust using the puredata.cpp architecture file.

A simple “bang” message to the control-inlet of the plugin (sent by clicking on the “button”
drawn as a circle-within-square in Fig. 8), results in a list being sent to the control (left) outlet
describing all plugin controls and their current state. The print object in Fig. 8 prints the received
list in the main pd console window. For our example, we obtain the following bang-response in the
pd console:

print: nentry /faust/bandwidth-Hz 100 100 20 20000 10

print: nentry /faust/frequency-Hz 1000 1000 20 20000 1

print: hslider /faust/peak-gain 1 1 0 10 0.01

These are the three controls we expected corresponding to the frequency, bandwidth, and gain of
the resonator. However, note that the message-names generated for the controls have changed. In
particular, spaces have been replaced by hyphens, and parentheses have been removed, to observe
pd naming rules for messages [1].

Controls may be queried or set to new values in the plugin by sending the following pd messages:

• frequency-Hz [newval]

• bandwidth-Hz [newval]

• peak-gain [newval]

10All manually generated .dsp files and pd patches in this module are available at
http://ccrma.stanford.edu/realsimple/faust/faustpd.tar.gz.

11In pd, a dynamically loadable module (pd plugin) is called an abstraction. (This is distinct from the one-off

subpatch which is encapsulated code within the parent patch, and which resides in the same file as the parent patch
[4].) It is customary to document each abstraction with its own “help patch”. The convention is to name the help
patch “name-help.pd”, where “name” is the name of the abstraction. Right-clicking on an object in pd and selecting
“Help” loads the help patch in a new pd window.

12

http://ccrma.stanford.edu/realsimple/faust/faustpd.tar.gz

The longer form of the control name printed in the pd console, e.g.,
/faust/peak-gain, is the complete “fully qualified path” that can be used to address controls
within a hierarchy of nested controls and abstractions. For example, if we were to add the instance
argument “foo” to the plugin (by changing the contents of the plugin box to “cpgrui~ foo” in
Fig. 8), then the path to the peak-gain control, for example, would become /foo/faust/peak-gain
(see [1] and the Faust documentation for more details and examples).

In the test-patch of Fig. 8, the various controls are exercised using pd message boxes. For
example, the message “peak-gain” with no argument causes the plugin to print the current value
of the peak-gain parameter on its control outlet. Messages with arguments, such as “peak-gain
0.01”, set the parameter to the argument value without generating an output message. The slider
and number-box output raw numbers, so they must be routed through a message-box in order to
prepend the controller name (“peak-gain” in this case).

The plugin input signal (second inlet) comes from a noise~ object in Fig. 8, and the output
signal (second outlet) is routed to both channels of the D/A converter (for center panning).

In addition to the requested controls, all plugins generated using the puredata.cpp architecture
file respond to the boolean “active” message, which, when given a “false” argument such as 0,
tells the plugin to bypass itself. This too is illustrated in Fig. 8. Note that setting active to “true”
at load time using a loadbang12 message is not necessary; the plugin defaults to the active state
when loaded and initialized—no active message is needed. The loadbang in this patch also turns
on pd audio computation for convenience.

7.2 Generating a Pd Plugin-Wrapper Abstraction

The test patch of Fig. 8 was constructed in pd by manually attaching user-interface elements to
the left (control) inlet of the plugin. As is well described in [1], one can alternatively use the
faust2pd script to generate a pd abstraction containing the plugin and its pd controllers. When
this abstraction is loaded into pd, its controllers are brought out to the top level using the “graph
on parent” mechanism in pd, as shown in Fig. 10 on page 15.

The faust2pd script works from the XML file generated by Faust using the -xml option:

> faust -xml -a puredata.cpp -o cpgrui-pd.cpp cpgrui.dsp

> faust2pd cpgrui.dsp.xml

Adding the -xml option results in generation of the file cpgrui.dsp.xml which is then used by
faust2pd to generate cpgrui.pd. Type faust2pd -h (and read [1]) to learn more of the features
and options of the faust2pd script.

The generated abstraction can be opened in pd as follows:

> pd cpgrui.pd

Figure 9 shows the result. As indicated by the inlet~ and outlet~ objects, the abstraction is
designed to be used in place of the plugin. For this reason, we will refer to it henceforth as a plugin
wrapper .

Notice in Fig. 9 that a plugin wrapper forwards its control messages (left-inlet messages) to the
encapsulated plugin, as we would expect. However, it also forwards a copy of each control message

12The loadbang object sends a “bang” message when the patch finishes loading.

13

inlet~inlet r $0-read

faust-control $0

s $0-write

r $0-in

cpgrui~

s $0-out

outlet~
outlet

bandwidth-Hz

100

frequency-Hz

1000

peak-gain

1

r $0-init s $0-in s $0-read

r $0-write

1

s $0-active

r $0-active

active $1

route active

s $0-active

100

s $0-faust/bandwidth-Hz

r $0-faust/bandwidth-Hz

/faust/bandwidth-Hz $1

route /faust/bandwidth-Hz

s $0-faust/bandwidth-Hz

1000

s $0-faust/frequency-Hz

r $0-faust/frequency-Hz

/faust/frequency-Hz $1

route /faust/frequency-Hz

s $0-faust/frequency-Hz

1

s $0-faust/peak-gain

r $0-faust/peak-gain

/faust/peak-gain $1

route /faust/peak-gain

s $0-faust/peak-gain

Generated Tue Aug 7 15:00:33 2007 by faust2pd v1.0. See
http://faudiostream.sf.net and http://q-lang.sf.net.

Control message decoding subpatch.

Figure 9: Pure Data abstraction generated by faust2pd from the XML file emitted by
Faust for the constant-peak-gain resonator (cpgrui.dsp).

to its control outlet. This convention facilitates making cascade chains of plugin-wrappers, as
illustrated in faust2pd examples such as synth.pd.13

7.3 A Pd Test Patch for the Plugin Wrapper

Figure 10 shows pd patch developed (manually) to test the plugin wrapper generated by faust2pd.
Compare this with Fig. 8 on page 12. Notice how the three controls are brought out to the plugin-
wrapper object automatically using the “graph on parent” convention for pd abstractions with
controllers. The bang button on the plugin resets all controls to their default values, and the toggle
switch in the upper-right corner functions as a “bypass” switch (by sending the active message
with appropriate argument). The previous mechanism of setting controls via message boxes to the
control inlet still works, as illustrated. However, as shown in Fig. 9 (or by opening the plugin-
wrapper in pd), the control outlet simply receives a copy of everything sent to the control inlet. In
particular, “bang” no longer prints a list of all controls and their settings, and controls cannot be
queried.

8 Generating a LADSPA Plugin via Faust

LADSPA stands for “Linux Audio Developer Simple Plugin API”, and it is the most common audio
plugin API for Linux applications. It can be considered the Linux counterpart of the widely used

13On a Linux system with Planet CCRMA installed, the command “locate synth.pd” should find it, e.g., at
/usr/share/doc/faust-pd-0.9.8.6/examples/synth/synth.pd .

14

noise~

dac~

cpgrui

bandwidth-Hz

300

frequency-Hz

300

peak-gain

0.5

print

peak-gain

frequency-Hz

frequency-Hz 500

bandwidth-Hz

frequency-Hz 300
bandwidth-Hz 200

bandwidth-Hz 300

loadbang

active 0

active 1

;
pd dsp 0

;
pd dsp 1

peak-gain 0.1

peak-gain 0.5

Figure 10: Pure Data test patch (cpgrui-help.pd) for exercising the plugin-
wrapper (cpgrui.pd) generated by faust2pd to control the faust-generated pd plugin
(cpgrui~.pd linux).

VST plugin standard for Windows applications. In the Planet CCRMA distribution, most of the
LADSPA plugins are found in the directory /usr/lib/ladspa/. At the time of this writing, there
are 161 audio plugins (.so files) in or under that directory.

To generate a LADSPA plugin from Faust source, it is merely necessary to use the ladspa.cpp
architecture file, as in the following example:

> faust -a ladspa.cpp cpgrui.dsp -o cpgruilp.cpp

> g++ -fPIC -shared -O3 \

-Dmydsp=’Constant_Peak_Gain_Resonator’ \

cpgruilp.cpp -o cpgruilp.so

> cp cpgruilp.so /usr/local/lib/ladspa/

(Recall that cpgrui.dsp was listed in Fig. 7 on page 11.) We see that the C++ compilation
step calls for “position-independent code” (option -fPIC) and a “shared object” format (option
-shared) in order that the file be dynamically loadable by a running program. (Recall that pd

similarly required its externals to be compiled -shared.) The Faust distribution provides the make
file /usr/lib/faust/Makefile.ladspacompile (among others) which documents such details.

Many Linux programs support LADSPA programs, such as the sound editor Audacity, the
multitrack audio recorder/mixer Ardour, and the sequencer Rosegarden. However, for our exam-
ple, we’ll use a simple application-independent LADSPA effects rack called JACK Rack (select
“Applications / Planet CCRMA / Jack / JACK Rack”).

Figure 11 shows the appearance of the jack-rack main window after adding14 the plugin named

14After running jack-rack, the LADSPA plugin was added by clicking on the menu items “Add / Uncategorised /

15

Constant Peak Gain Resonator. Note that the two numeric entry fields have been converted to
horizontal sliders. (Vertical sliders are also converted to horizontal.) Also, the controller names
have been simplified. A bug is that the default values for the controls are not set correctly when
the plugin loads. (They were set manually to obtain Fig. 11 as shown.)

Figure 11: JACK Rack screenshot after adding the LADSPA plugin
Constant Peak Gain Resonator. Additional LADSPA plugins can be loaded in
the space below (and connected in series).

To test the LADSPA plugin, any program’s audio output can be routed through jack-rack to
the sound-out driver (typically “ALSA PCM” these days). For example, pd’s audio output can be
routed through jack-rack to alsa pcm as shown in Fig. 12.15

9 Generating a VST Plugin via Faust

This section describes generation of a Windows VST plugin starting from Faust code, again using
the constant-peak-gain resonator example.

The VST (Virtual Studio Technology) plugin standard was developed by Steinberg Media
Technologies (makers of Cubase). It enjoys wide usage on Windows and Macintosh platforms. The
Faust distribution contains the make-file /usr/lib/faust/Makefile.vstcompile for compiling
and installing VST plugins using Xcode on a Mac OS-X machine. For our example, however, we’ll
create a Windows-format VST plugin (.dll file) using Microsoft Visual C++. The example was

C / Constant Peak Gain Resonator”. If jack-rack does not find this or other plugins, make sure your LADSPA PATH

environment variable is set. A typical setting would be /usr/local/lib/ladspa/:/usr/lib/ladspa/.
15Sound routings such as this may be accomplished using the “Connect” window in qjackctl. In that window,

there is an Audio tab and a MIDI tab, and the Audio tab is selected by default. Just click twice to select the desired
source and destination and then click “Connect”. Such connections can be made automatic by clicking “Patchbay”
in the qjackctl control panel, specifying your connections, saving, then clicking “Activate”. Connections can also
be established at the command line using aconnect from the alsa-utils package (included with Planet CCRMA).

16

Figure 12: JACK audio connections routing pd through jack-rack to the ALSA sound-
out driver alsa pcm.

tested on a Muse Receptor .16

Because the Receptor does not support mono plugins, the process line in the Faust source in
Fig. 7 on page 11 was modified as follows to make it stereo-compatible:

process = + : firpart : + ~ feedback <: (_,_)

This version was named cpgrui vst.dsp. To generate a VST plugin, we simply use a VST archi-
tecture file:

faust -a vst2p4.cpp cpgrui_vst.dsp -o cpgrui_vst.cpp

Next, the file cpgrui vst.cpp was copied over to a Windows-XP machine with Microsoft Vi-
sual Studio Express installed (including Visual C++ 2008). The programming sample “again”
from the Steinberg VST-2.4 SDK was copied to an adjacent directory cpgr and trivially modi-
fied to create a compilable C++ project. (Specifically, replace again.cpp by cpgrui vst.cpp,
rename again.vcproj to cpgr.vcproj, and change all occurrences of “again” to “cpgrui vst”
in cpgr.vcproj, and change “Gain” to “CPGR” to rename the plugin. Finally, double-click on
cpgr.vcproj to launch Visual C++ on the cpgr project.) Selecting the menu item “Build / Build
cpgr” creates cpgr/win/Debug/cpgr.dll (the VST plugin itself). To test the plugin, it was copied
into the “Unsupported Plugins” folder on the Receptor, and installed by clicking the “1 installs”
button on the Receptor’s Setup page. After that, the plugin could be instantiated on a Receptor
“Mix” channel, as shown in Fig. 13, and Fig. 14 shows the automatically generated edit window of
the plugin.

16The Receptor is a hardware VST plugin host designed for studio work and live musical performance. While
it only supports Windows VST plugins, it is based on a Red Hat Linux operating system using wine for Windows
compatibility. The VST plugin described in this section was tested on system version 1.6.20070717 running on
Receptor hardware version 1.0. This system expects VST-2.3 plugins, and so VST-2.4 plugins cause a warning
message to be printed in the Receptor’s system log. However, v2.4 plugins seem to work fine in the 2.3 framework.
There was a competitor to the Receptor called Plugzilla that supported both VST and LADSPA plugins, but Plugzilla
no longer appears to be available.

17

Figure 13: Screenshot of the Receptor Remote Control program, showing the “Mix” view.
The constant-peak-gain resonator (named cpgr) is instantiated as a plugin processing the
“Piano” source signal.

Figure 14: Screenshot of the upper-left corner of the parameter-editing window of the
Receptor’s remote-control program showing the constant-peak-gain resonator parameters.

18

9.1 Bypassing Windows

Beginning with Faust version 0.9.9.4j-par, a new makefile called Makefile.w32vstcompile is
distributed in the examples directory. This makefile can be adapted to work on Fedora F8 Linux
as follows.

1. Download and install the following RPMs from SourceForge:

mingw-binutils-2.18.50-6.fc8.i386.rpm

mingw-gcc-core-4.2.1-6.fc8.i386.rpm

mingw-gcc-g++-4.2.1-6.fc8.i386.rpm

mingw-runtime-3.14-3.fc8.i386.rpm

mingw-w32api-3.11-3.fc8.i386.rpm

(Unfortunately, mingw is not in the standard yum repos yet.)

2. In Makefile.w32vstcompile, edit the VST line to say where your vstsdk2.4 directory is
located, and change all occurrences of i586-mingw32msvc to i386-mingw32.

3. The plugin name defaults to “FaustFx”. You can change this by declaring the name in your
Faust source. For the example of the previous section, we could say

declare name "CPGR";

in place of the longer name used in Fig. 7 on page 11. (The longer name results in a plugin
called “ConstantPeakGainResonator”.)

4. After the make, simply copy the dll file to the Receptor and tell the Receptor to install it on
the Setup page of the Receptor Remote Control program as before (which requires Windows
or a Mac). While one can press the Setup button on the Receptor front panel and rotate the
Top Display Knob to “Install/Upgrade” (the next-to-last entry), there you will find “0 files”
even when there is a file to install. The manual documents that it is not allowed to install
plugins from the Receptor front panel, because some installs require a user interface (such as
to receive an authorization code). This is an unfortunate and unnecessary restriction in our
case that prevents working entirely directly with the Receptor from a Linux environment.

The Receptor’s “Unsupported Plugins” directory can be mounted as follows:

> mkdir /mnt/receptor

> mount -t cifs <ReceptorIPA>:hard\ drive/Program\ Files/VST\ Plugins/Unsupported\ Plugins \

/mnt/receptor

(Remember to say umount /mnt/receptor when you are done.) The Receptor’s IP Address
(typically assigned by DHCP) can also be viewed by pressing the Setup button and rotating the
Top Display Knob to that field.

10 Generating a MIDI Synthesizer for Pd

The faust2pd script (introduced in §7 above) also has a mode for generating MIDI synthesizer
plugins for pd. This mode is triggered by use of the -n option (“number of voices”). For this mode,
the Faust program should be written to synthesize one voice using the following three parameters
(which are driven from MIDI data in the pd plugin):

19

• freq - frequency of the played note (Hz)
• gain - amplitude of the played note (0 to 1)
• gate - 1 while “key is down”, 0 after “key up”

The parameters freq and gain are set according to MIDI note-number and velocity, respectively,
while the gate parameter is set to 1 on a MIDI “note-on” and back to zero upon “note-off”. The
faust2pd script handles instantiation of up to 8 instances of the synth patch, and provides the
abstraction midi-in.pd for receiving and decoding MIDI data in pd.

Let’s make a simple 8-voiced MIDI synthesizer based on the example Faust program cpgrs.dsp

(“Constant-Peak-Gain Resonator Synth”) listed in Fig. 15. In addition to converting the frequency
and gain parameters to the standard names, we have added a classic ADSR envelope generator
(defined in Faust’s music.lib file) which uses the new gate parameter, and which adds the four
new envelope parameters attack, decay, sustain, and release.

Compiling the example is the same as for a pd plugin, except that the -n option is used (8
voices is the maximum):

> faust -xml -a puredata.cpp -o cpgrs-pd.cpp cpgrs.dsp

> g++ -DPD -Wall -g -shared -Dmydsp=cpgrs \

-o cpgrs~.pd_linux cpgrs-pd.cpp

> faust2pd -n 8 -s -o cpgrs.pd cpgrs.dsp.xml

11 MIDI Synthesizer Test Patch

The example synth is loaded into pd like any plugin-wrapper. A manually written test patch
(cpgrs-help.pd) is shown in Fig. 16. Note that the standard MIDI-synth control parameters
(freq, gain, gate) are handled behind the scenes and do not appear among the plugin GUI
controls.

To drive our MIDI synth, we need a source of MIDI data. Perhaps the simplest resource for
this purpose is the Virtual Keyboard (vkeybd), which is standard in Red Hat Fedora 6, and in the
planetccrma-menus at “Applications / Planet CCRMA / MIDI / Vkeybd”). Figure 17 shows a
screen shot of the Virtual Keyboard with its key-range and velocity controllers displayed (menu item
“View / Key/Velocity”). The velocity controller sets the gain parameter, mapping MIDI velocity
(0-127) to the unit interval (0-1). The key-range controller transposes the keyboard by octaves.
Pressing a key determines, together with the key-range, the freq parameter in our synth. Pressing
a key also sets the gate parameter to 1, and releasing it sets gate to 0. The ADSR envelope is
triggered when gate transitions to 1, and it begins its “release” phase when gate transitions to
0, as is standard for ADSR envelopes triggered by a keyboard. Note that the bottom two rows of
ASCII keyboard keys are mapped to virtual-keyboard keys, enabling the playing of chords in real
time on the regular computer keyboard.

Figure 18 illustrates the MIDI tab of qjackctl’s Connect window after connecting the Virtual
Keyboard MIDI output to pd’s MIDI input.17

17Pd must have at least one MIDI-input port defined at startup for this to work. For example, a typical ~/.pdrc
file might contain the following startup options for pd:
-jack -r 48000 -alsamidi -midiindev 1 -midioutdev 1 -audiooutdev 1 -outchannels 2 -path

/usr/lib/pd/...

20

declare name "Constant-Peak-Gain Resonator Synth";

declare author "Julius Smith";

declare version "1.0";

declare license "GPL";

/* Standard synth controls supported by faust2pd */

freq = nentry("freq", 440, 20, 20000, 1); // Hz

gain = nentry("gain", 0.1, 0, 1, 0.01); // frac

gate = button("gate"); // 0/1

/* User Controls */

bw = hslider("bandwidth (Hz)", 100, 20, 20000, 10);

import("music.lib"); // define noise, adsr, PI, SR, et al.

/* ADSR envelope parameters */

attack = hslider("attack", 0.01,0, 1, 0.001); // sec

decay = hslider("decay", 0.3, 0, 1, 0.001); // sec

sustain = hslider("sustain",0.5, 0, 1, 0.01); // frac

release = hslider("release",0.2, 0, 1, 0.001); // sec

/* Synth */

process = noise * env * gain : filter

with {

env = gate :

vgroup("1-adsr",

adsr(attack, decay, sustain, release));

filter = vgroup("2-filter", (firpart : + ~ feedback));

R = exp(0-PI*bw/SR); // pole radius [0 required]

A = 2*PI*freq/SR; // pole angle (radians)

RR = R*R;

firpart(x) = (x - x’’) * ((1-RR)/2);

// time-domain coeffs ASSUMING ONE PIPELINE DELAY:

feedback(v) = 0 + 2*R*cos(A)*v - RR*v’;

};

Figure 15: Listing of cpgrs.dsp—a Faust program specifying a simple synth patch con-
sisting of white noise through a constant-peak-gain resonator.

21

print

bandwidth-Hz

bandwidth-Hz 200

bandwidth-Hz 300

loadbang

active 0

active 1

;
pd dsp 0

;
pd dsp 1

dac~

cpgrs

attack

0.01

decay

0.3

release

0.2

sustain

0.5

bandwidth-Hz

20

midi-in 8 0

Figure 16: Test patch for the pd synth plugin cpgrs.pd generated by faust2pd based on
cpgrs.dsp in Fig. 15.

Figure 17: The Virtual Keyboard (MIDI source).

22

Figure 18: JACK MIDI connections routing MIDI from the Virtual Keyboard (vkeybd)
to pd’s first MIDI input port.

To play back a MIDI file (extension .mid), a nice way is to open it in Rosegarden (“Applications
/ Planet CCRMA / Sequencers / Rosegarden”) and connect Rosegarden’s MIDI output to pd’s
MIDI input as above. (You can still play along on the Virtual Keyboard.)

References

[1] A. Gräf, “Interfacing Pure Data with Faust,” in Proceedings of the 5th International Linux
Audio Conference (LAC2007),
http://www.kgw.tu-berlin.de/~lac2007/proceedings.shtml.

[2] Y. Orlarley, A. Gräf, and S. Kersten, “DSP programming with Faust, Q and SuperCollider,”
in Proceedings of the 4th International Linux Audio Conference (LAC2006),
http://lac.zkm.de/2006/proceedings.shtml, 2006,
http://www.grame.fr/pub/lac06.pdf.

[3] M. Puckette, Pure Data (PD), http://www.puredata.org, July 2004.

[4] M. Puckette, Theory and Techniques of Electronic Music,
http://www.worldscibooks.com/compsci/6277.html: World Scientific Press, May 2007,
http://www-crca.ucsd.edu/ msp/techniques.htm.

[5] J. O. Smith, Introduction to Digital Filters with Audio Applications, http://w3k.org/books/:
W3K Publishing, 2007, http://ccrma.stanford.edu/~jos/filters/.

[6] J. O. Smith, “Virtual electric guitars and effects using Faust and Octave,” in Proceedings of the
6th International Linux Audio Conference (LAC2008), http://lac.linuxaudio.org/, 2008,
paper: http://ccrma.stanford.edu/realsimple/faust strings/faust strings.pdf,
overheads: http://ccrma-ftp.stanford.edu/~jos/pdf/LAC2008-jos.pdf, supporting
website: http://ccrma.stanford.edu/realsimple/faust strings/.

23

http://www.kgw.tu-berlin.de/~lac2007/proceedings.shtml
http://lac.zkm.de/2006/proceedings.shtml
http://www.grame.fr/pub/lac06.pdf
http://www.puredata.org/
http://www-crca.ucsd.edu/\char `~msp/techniques.htm
http://www.w3k.org/books/
http://ccrma.stanford.edu/~jos/filters/
http://lac.linuxaudio.org/
http://ccrma.stanford.edu/realsimple/faust_strings/faust_strings.pdf
http://ccrma-ftp.stanford.edu/~jos/pdf/LAC2008-jos.pdf
http://ccrma.stanford.edu/realsimple/faust_strings/

	Note
	Introduction
	Installing Faust
	Installing Faust Examples

	A Simple Faust Program
	Generating Faust Block Diagrams
	Testing a Faust Filter Section
	A Look at the Generated C++ code
	Generating a Pure Data (Pd) Plugin
	Generating the Pd Plugin
	Generating a Pd Plugin-Wrapper Abstraction
	A Pd Test Patch for the Plugin Wrapper

	Generating a LADSPA Plugin via Faust
	Generating a VST Plugin via Faust
	Bypassing Windows

	Generating a MIDI Synthesizer for Pd
	MIDI Synthesizer Test Patch

