
Pure and Faust: Functional
Programming for Media

Applications

Albert Gräf
Department of Music Informatics
Johannes Gutenberg University Mainz

Overview

● Term rewriting as a model of computation

● A brief tour of Pure

● Building a synthesizer with Pure and Faust

● Interfacing to Pd

● Demo of pd-faust

● Conclusion

Models of computation

● Recursive functions ⇒ theory of computation

● String rewriting (Semi-Thue) systems ⇒
Turing machines, grammars

● Term rewriting ⇒ universal algebra,
computer algebra, algebraic specification

● Lambda calculus ⇒ functional programming

● Random access machine ⇒ von Neumann
architecture, imperative programming

Advantages of TR

● Purely functional (no side effects)
● Allows tree-like data structures
● More expressive than lambda calculus
● No distinction between defined functions and

data constructors
● Symbolic evaluation (computer algebra)
● Constructor equations

> x:y:xs = y:x:xs if x>y; x:y:xs = x:xs if x==y;
> [13,7,9,7,1]+[1,9,7,5];
[1,5,7,9,13]

Term rewriting

● Signature Σ (alphabet with arities) of function
and variable symbols

● Terms f t
1
 … t

n
 (f ∈ Σ

n
) ⇒ term algebra T(Σ)

● Alternate representations: labelled trees,
term DAGs (directed acyclic graphs) ⇒
graph rewriting

● Rewriting rules are of the form
p → q, p,q ∈ T(Σ).

Term reductions

● R = finite set of term rewriting rules

● variable substitutions: σ = [x
1
→t

1
,x

2
→t

2
,...]

● reduction step: t[σ(p)] →
R
 t[σ(q)], p → q ∈ R

● σ(p) is called the redex, σ(q) the reduct, σ
the matching substitution

● u →∗
R
 v if u reduces to v in zero or more

steps (reflexive/transitive closure)
● if v is irreducible, it is a normal form of u

Reduction strategy

● Order in which redices are used and rules
are picked matters if R isn't both confluent
and terminating

● Optimal (or at least terminating) reduction
strategies are known for some systems, but
are undecidable in general

● Practical solution: rule order + redex
selection strategy

● Leftmost-innermost (eager, “call by value”)
● Leftmost-outermost (lazy, “call by need”)

Term rewriting as a PL

● Mike O'Donnell 1985: Equational Logic as a
Programming Language

● Computer algebra, algebraic programming
(OBJ, OPAL) (for special purposes)

● 1991: Q
● 1994: Mozart/Oz (CTMCP book)
● 2000: Aardappel (Oortmerssen)
● 2008: Pure

Pure as a term rewriting language

● Purely functional core + ability to call any C
function (and thereby have side effects)

● Conditional and ordered rewriting
● Leftmost-innermost (eager) evaluation, lazy

evaluation via “thunks”
● Lambdas, local functions and variables

(block constructs with lexical scoping)
● FP-style currying and partial applications
● Types as predicates, interface types

Additional features

● Interactive interpreter-like environment
● JIT (just in time) compilation to native code

using the LLVM toolkit (Lattner et al)
● Batch compilation
● Easy interface to C/C++, Fortran, Faust,

Octave, ...
● Programming modes for emacs, vi et al
● Compiled functional scripting language

Demo

Conclusion

● Pure: a general-purpose FPL based on term rewriting

● High-level programming style

● Easy interface to C, C++, Fortran and Faust

● Interfaces to MIDI, audio, OSC, Pd, Octave,
Gnumeric ...

● Use as a glue language, as a compiled functional
scripting language, for doing control stuff ...

● Try for yourself: “Planet Pure+Faust” Ubuntu 11.04
LiveCD with all things Pure+Faust already installed
http://download.linuxaudio.org/pure+faust/

http://download.linuxaudio.org/pure+faust/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

