MUS421 Lecture 3A FFT Windows

Julius O. Smith III (jos@ccrma.stanford.edu)
Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music, Stanford University
Stanford, California 94305

June 27, 2020

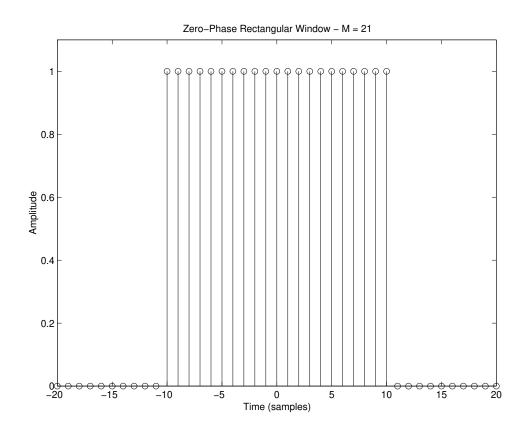
Outline

- Rectangular, Hann, Hamming
- MLT Sine
- Blackman-Harris Window Family
- Bartlett
- Poisson
- Slepian and Kaiser
- Dolph-Chebyshev
- Gaussian
- Optimal Windows

The Rectangular Window

Previously, we looked at the rectangular window:

$$w_R(n) \stackrel{\Delta}{=} \left\{ egin{array}{l} 1, & |n| \leq rac{M-1}{2} \\ 0, & ext{otherwise} \end{array}
ight.$$



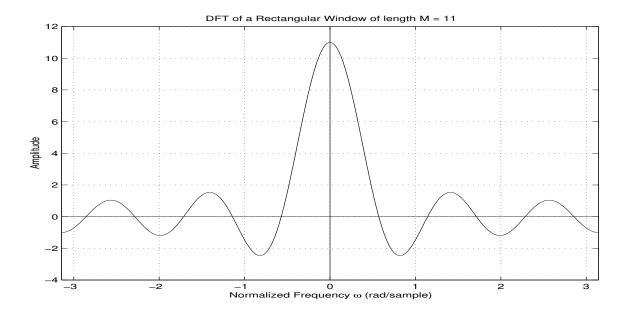
The window transform (DTFT) was found to be

$$W_R(\omega) = \frac{\sin\left(M\frac{\omega}{2}\right)}{\sin\left(\frac{\omega}{2}\right)} \stackrel{\Delta}{=} M \cdot \mathsf{asinc}_M(\omega) \tag{1}$$

where $\operatorname{asinc}_M(\omega)$ denotes the aliased sinc function.

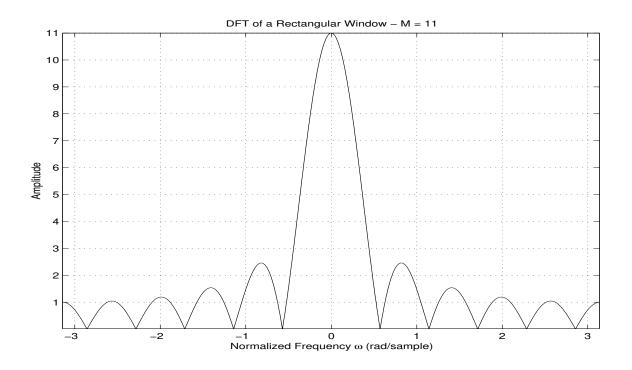
$$\mathsf{asinc}_M(\omega) \stackrel{\Delta}{=} \frac{\sin(M\omega/2)}{M \cdot \sin(\omega/2)}$$

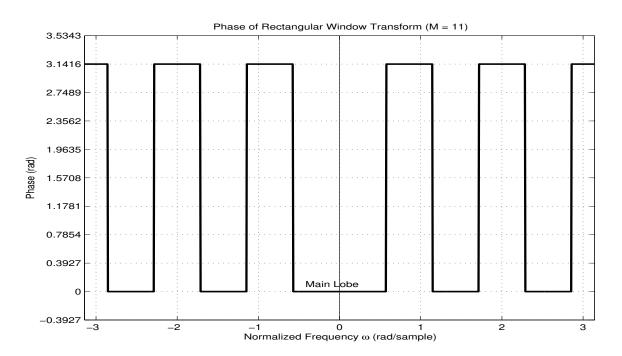
This result is plotted below:



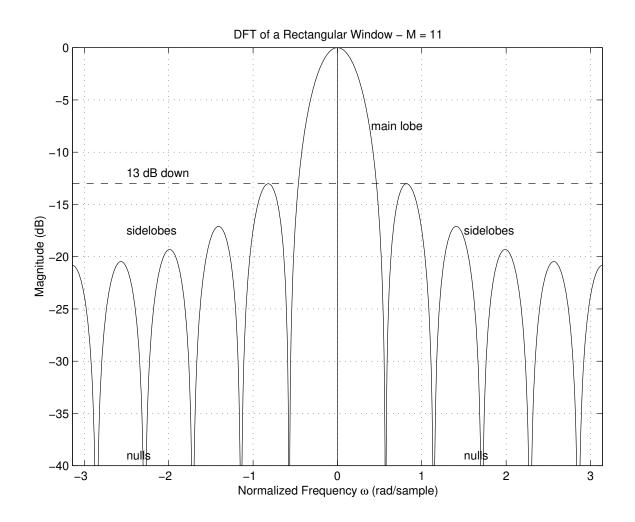
Note that this is the complete window transform, not just its magnitude. We obtain real window transforms like this only for symmetric, zero-centered windows.

More generally, we may plot both the *magnitude* and *phase* of the window versus frequency:

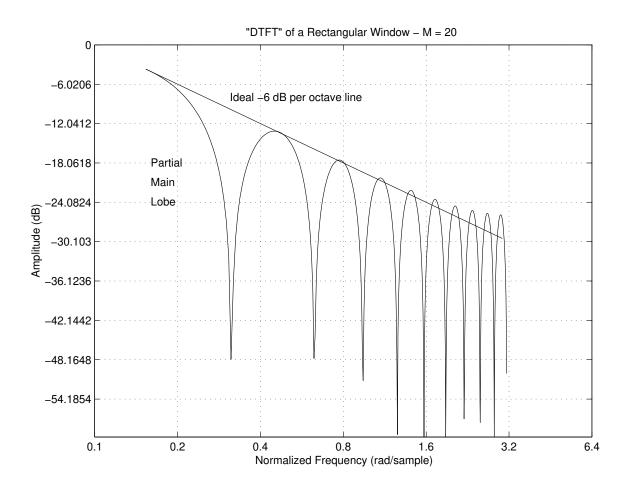




In audio work, we more typically plot the window transform magnitude on a *decibel* (*dB*) *scale*:



Since the DTFT of the rectangular window approximates the sinc function, it should "roll off" at approximately 6 dB per octave, as verified in the log-log plot below:



As the sampling rate approaches infinity, the rectangular window transform converges exactly to the sinc function. Therefore, the departure of the roll-off from that of the sinc function can be ascribed to *aliasing* in the frequency domain, due to sampling in the time domain.

Sidelobe Roll-Off Rate

In general, when only the first n terms exist in the power-series expansion of a continuous function w(t) (i.e., each term is finite), then the Fourier Transform magnitude $|W(\omega)|$ is asymptotically proportional to

$$|W(\omega)| \to \frac{1}{\omega^n} \quad (\text{as } \omega \to \infty)$$

Proof: Papoulis, **Signal Analysis**, McGraw-Hill, 1977 Thus, we have the following rule-of-thumb:

$$n \text{ terms} \leftrightarrow -6n \text{ dB per octave roll-off rate}$$

(since
$$-20 \log_{10}(2) = 6.0205999...$$
).

This is also -20n dB per *decade*.

To apply this result, we normally only need to look at the window's *endpoints*. The interior of the window is usually differentiable of all orders.

Example Roll-Off Rates:

- Amplitude discontinuity $(n=1) \leftrightarrow -6 \text{ dB/octave}$
- Slope discontinuity $(n=2) \leftrightarrow -12 \text{ dB/octave}$
- Curvature discontinuity $(n=3) \leftrightarrow -18 \text{ dB/octave}$

For discrete-time windows, the roll-off rate slows down at high frequencies due to aliasing.

In summary, the DTFT of the M-sample rectangular window is proportional to the 'aliased sinc function':

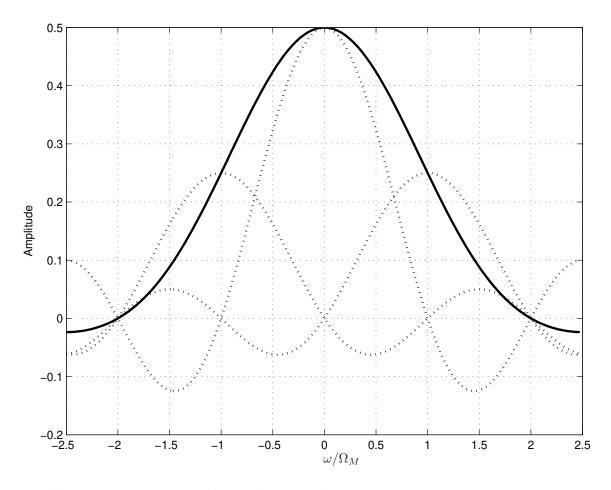
$$\begin{aligned} \operatorname{asinc}_M(\omega T) \; & \stackrel{\triangle}{=} \; \frac{\sin(\omega MT/2)}{M \cdot \sin(\omega T/2)} \\ & \approx \; \frac{\sin(\pi fMT)}{M\pi fT} \stackrel{\triangle}{=} \operatorname{sinc}(fMT) \end{aligned}$$

Points to note:

- Zero crossings at integer multiples of $\Omega_M \stackrel{\Delta}{=} \frac{2\pi}{M}$ where $\Omega_M \stackrel{\Delta}{=} \frac{2\pi}{M} =$ frequency sampling interval for a length M DFT
- Main lobe width is $2\Omega_M = \frac{4\pi}{M}$
- ullet As M gets bigger, the mainlobe narrows (better frequency resolution)
- *M* has no effect on the height of the side lobes (Same as the "Gibbs phenomenon" for Fourier series)
- First sidelobe only 13 dB down from main-lobe peak
- Side lobes roll off at approximately 6 dB per octave
- A phase term arises when we shift the window to make it causal, while the window transform is real in the zero-centered case (i.e., centered about time 0)

Generalized Hamming Window Family

Consider the following picture in the frequency domain:



https://ccrma.stanford.edu/~jos/Windows/Generalized_Hamming_Window_Family.html

We have added 2 extra aliased sinc functions (shifted), which results in the following behavior:

- There is some cancellation of the side lobes
- The width of the main lobe is doubled

In terms of the rectangular window transform $W_R(\omega)=M\cdot {\sf asinc}_M(\omega)$ (zero-centered, unit-amplitude case), this can be written as:

$$W_H(\omega) \stackrel{\Delta}{=} \alpha W_R(\omega) + \beta W_R(\omega - \Omega_M) + \beta W_R(\omega + \Omega_M)$$

Using the Shift Theorem dual, we can take the inverse transform of the above equation:

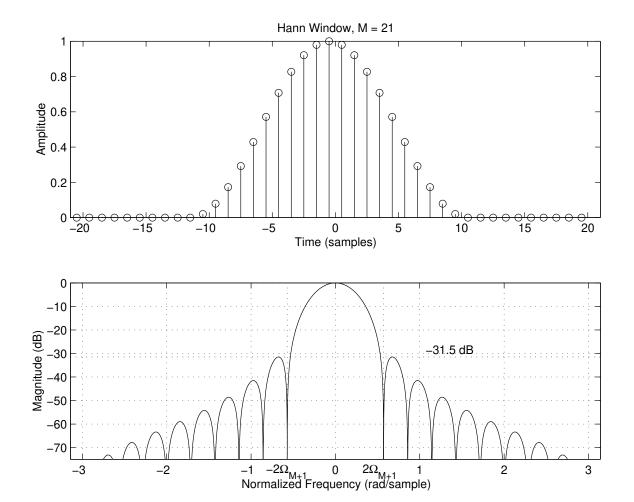
$$w_H = \alpha w_R(n) + \beta e^{-j\Omega_M n} w_R(n) + \beta e^{j\Omega_M n} w_R(n)$$
$$= w_R(n) \left[\alpha + 2\beta \cos \left(\frac{2\pi n}{M} \right) \right]$$

Choosing various parameters for α and β result in different windows in the generalized Hamming family, some of which have names.

Hann or Hanning or Raised Cosine

The Hann window is defined by the settings $\alpha=1/2$ and $\beta=1/4$:

$$w_H(n) = w_R(n) \left[\frac{1}{2} + \frac{1}{2} \cos(\Omega_M n) \right] = w_R(n) \cos^2 \left(\frac{\Omega_M}{2} n \right)$$



Hann window properties:

- ullet Main lobe is $4\Omega_M$ wide
- \bullet First side lobe is at $-31~\mathrm{dB}$
- ullet Side-lobes roll off at $pprox 18~\mathrm{dB}$ / octave

Compare to the Rectangular window:

- \bullet Main lobe is $2\Omega_M$ wide
- First side lobe at -13 dB
- ullet Side-lobes roll off at $pprox 6~\mathrm{dB}$ / octave

Hamming

This window is determined by choosing α to cancel the first side lobe and β to normalize peak amplitude to 1 in the time domain:

$$\alpha = \frac{25}{46} \approx 0.54$$

$$\beta = (1 - \alpha)/2$$

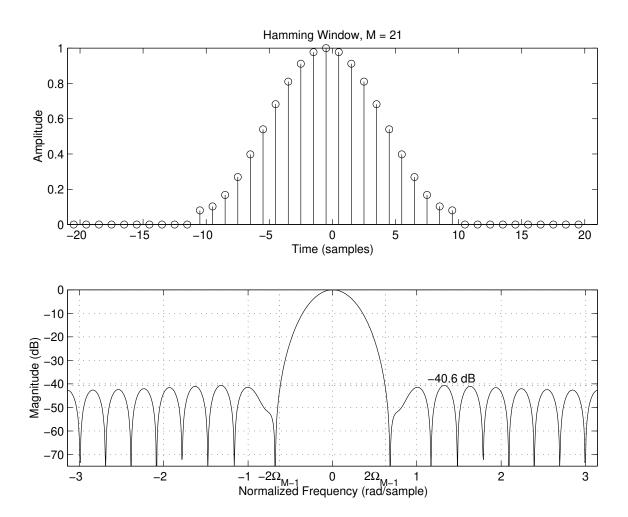
Note: The Hamming window is very close to the generalized Hamming window which *minimizes sidelobe level* within the family:

$$\alpha = 0.53836$$
 (minimum peak side-lobe magnitude)

Thus, the Hamming window is the "Chebyshev Generalized Hamming Window" rounded to two significant digits.

Chebyshev-type designs generally exhibit *equiripple* error behavior, since the worst-case error (sidelobe level in this case) is minimized (see Dolph-Chebyshev window below)

Hamming Window

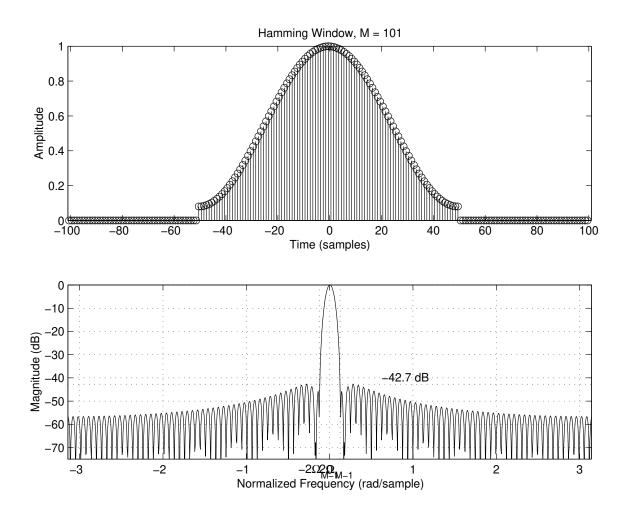


Hamming Window Properties

- Discontinuous "slam to zero" at endpoints
- main lobe is $4\Omega_M$ (like Hann)
- Roll off is approx. 6 dB/octave (but aliased)
- 1st side lobe is improved over Hann
- side lobes closer to "equal ripple"

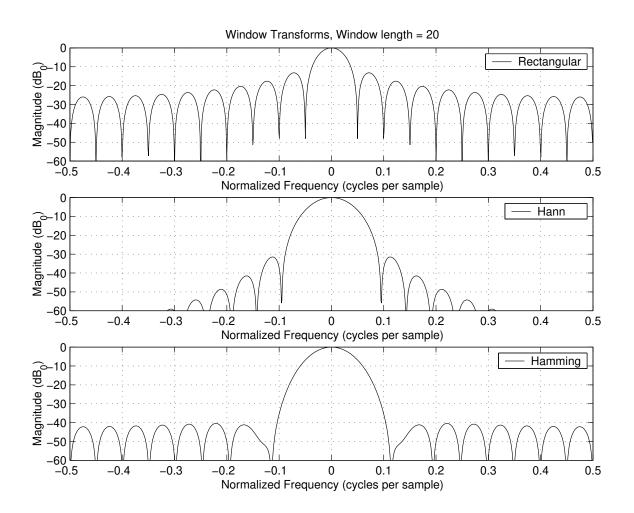
Question: How can side-lobes approximate "equal ripple" when they cannot roll-off slower than 6 dB / octave?

Longer Hamming Window



- Since the side-lobes nearest the main lobe are most affected by the Hamming optimization, we now have a larger frequency region over which the spectral envelope looks like that of the asinc function (an "aliased -6 dB/octave roll-off").
- The side-lobe level (-42.7 dB) is also improved over that of the shorter window (-40.6 dB).

Window Transform Summary



The MLT Sine Window

The Modulated Lapped Transform (MLT) uses the sine window:

$$w(n) = \sin\left[\left(n + \frac{1}{2}\right)\frac{\pi}{2M}\right], \quad n = 0, 1, 2, \dots, 2M - 1.$$

- Used in MPEG-1, Layer 3 (MP3 format), MPEG-2 AAC, MPEG-4
- Sidelobes 24 dB down
- Asymptotically optimal coding gain
- Zero-phase-window transform ("truncated cosine window") has smallest moment of inertia over all windows:

$$\int_{-\pi}^{\pi} \omega^2 W(\omega) d\omega = \min$$

Blackman-Harris Window Family

- The Blackman-Harris family of windows is basically a generalization of the Hamming family.
- In the case of the Hamming family, we constructed a summation of 3 shifted sinc functions.
- The Blackman-Harris family is derived by considering a more general summation of shifted sinc functions:

$$w_B(n) = w_R(n) \sum_{l=0}^{L-1} \alpha_l \cos(l\Omega_M n)$$

where
$$\Omega_M \stackrel{\Delta}{=} 2\pi/M$$
, $n = -(M-1)/2, \ldots (M-1)/2$, (M odd).

Special Cases:

- $L=1 \Rightarrow \mathsf{Rectangular}$
- $L=2 \Rightarrow$ Generalized Hamming
- $L = 3 \Rightarrow \mathsf{Blackman} \; \mathsf{Family}$
- $L > 3 \Rightarrow \mathsf{Blackman}\mathsf{-Harris}$ Family

Frequency-Domain Implementation

The Blackman-Harris window family can be very efficiently implemented in the frequency domain as a (2L-1)-point convolution with the spectrum of the unwindowed data. Example:

- 1. Hann Window = 3-Point DFT_M Smoother:
 - ullet Start with a length M rectangular window
 - ullet Take an M-point DFT
 - Convolve the DFT data with the 3-point smoother [1/4, 1/2, 1/4] to implement a Hann window
 - Note that the Hann window requires *no multiplies* in linear fixed-point data formats
- 2. Any Blackman window is a 5-point smoother for a Length M (critically sampled) DFT

Classic Blackman

The so-called "Blackman Window" is the specific case in which $\alpha_0=0.42$ $\alpha_1=0.5$, and $\alpha_2=0.08$

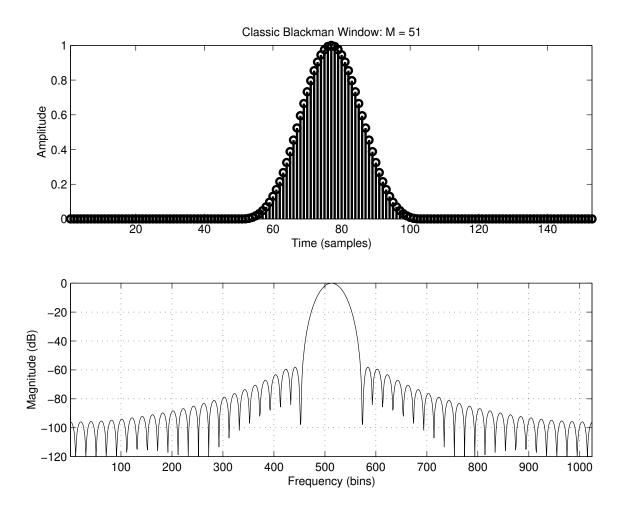
Properties:

- ullet Sidelobes roll off about 18 dB per octave (as T o 0)
- -58 dB sidelobe level (worst case)
- One degree of freedom used to increase the roll-off rate from 6 dB/octave to 18 dB per octave
- One degree of freedom used to minimize sidelobes
- One degree of freedom used to scale the window

Matlab:

```
N = 101; L = 3; No2 = (N-1)/2; n=-No2:No2;
ws = zeros(L,3*N); z = zeros(1,N);
for l=0:L-1
   ws(l+1,:) = [z,cos(l*2*pi*n/N),z];
end
alpha = [0.42,0.5,0.08]; % Classic Blackman
w = alpha * ws;
```

Classic Blackman Window and Transform



Three-Term Blackman-Harris

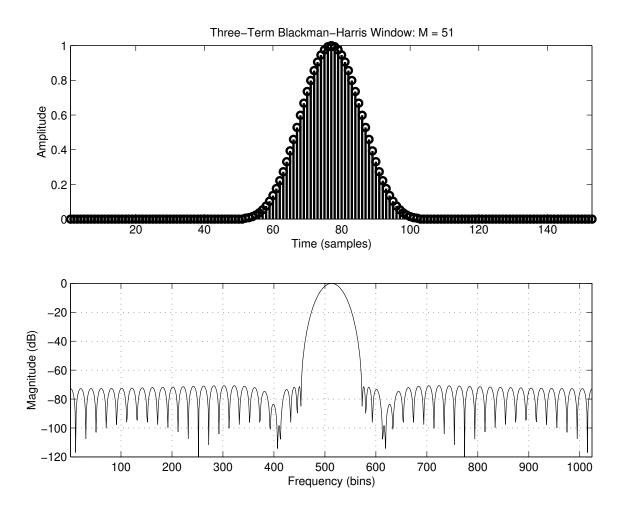
Properties:

- $\alpha_0 = 0.4243801$ $\alpha_1 = 0.4973406$, and $\alpha_2 = 0.0782793$.
- Side-lobe level -71.5 dB.
- Side lobes roll off ≈ 6 dB per octave in the absence of aliasing (like rectangular and Hamming).
- All degrees of freedom (scaling aside) are used to minimize side lobes (like Chebyshev-Hamming \approx Hamming).

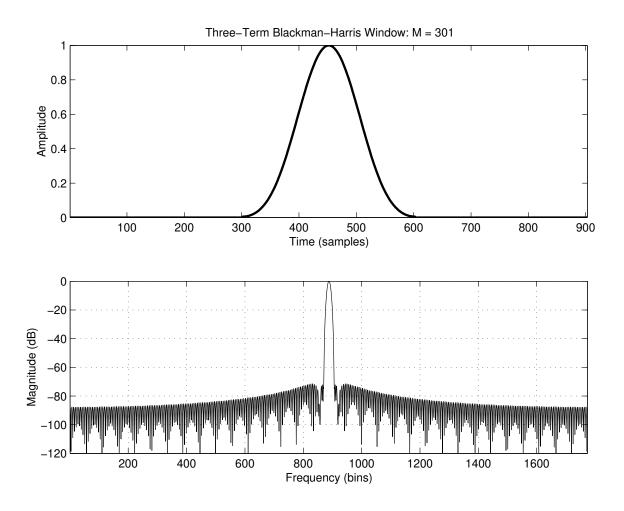
Matlab:

```
N = 101; L = 3; No2 = (N-1)/2; n=-No2:No2;
ws = zeros(L,3*N); z = zeros(1,N);
for l=0:L-1
   ws(l+1,:) = [z,cos(l*2*pi*n/N),z];
end
% 3-term Blackman-Harris(-Nuttall):
alpha = [0.4243801, 0.4973406, 0.0782793];
w = alpha * ws;
```

Three-Term Blackman-Harris Window and Transform



Longer Three-Term Blackman-Harris Window and Transform



Power-of-Cosine

$$w(n) = w_R(n) \cos^P\left(\frac{\pi n}{M}\right), \quad n \in \left[-\frac{M-1}{2}, \frac{M-1}{2}\right]$$

- $P = 0, 1, 2, \dots$
- first P terms of its Taylor expansion, evaluated at the endpoints (1/2 sample beyond last sample) are 0
- \bullet roll-off rate $\approx 6(P+1) \ \mathrm{dB/octave}$
- $P = 0 \Rightarrow$ Rectangular window
- $P = 1 \Rightarrow \mathsf{MLT}$ sine window (shifted to zero-phase)
- $P = 2 \Rightarrow \text{Hann window ("raised cosine"} = \text{"}\cos^2\text{"})$
- ullet $P=4\Rightarrow$ Alternate Blackman (max roll-off rate in Blackman family)

• • • •

Thus, \cos^P windows parametrize Lth-order Blackman-Harris windows configured to use all degrees of freedom to maximize roll-off rate (L=P/2+1)

Spline Windows

A spline window of order N is a repeated convolution of rectangular windows:

$$w_{\mathsf{Spline}(N)}(n) = (\underbrace{w_R * w_R * \cdots * w_R}_{N+1})(n)$$
 $\leftrightarrow W_{\mathsf{Spline}(N)}(\omega) = \operatorname{asinc}^{N+1}$

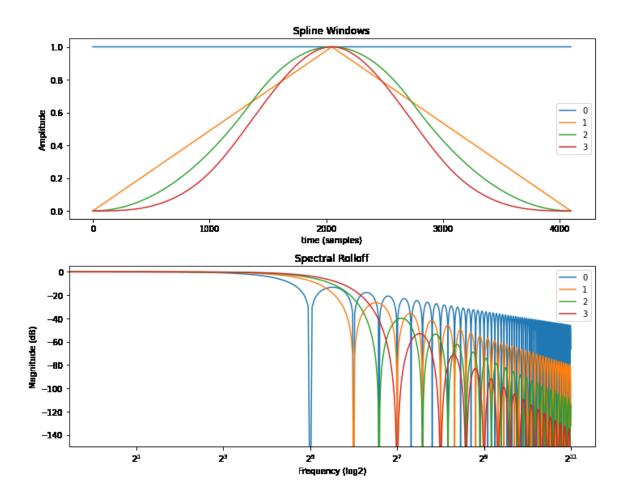
Special Cases:

- $N = 0 \Rightarrow \text{Rectangular (constant)}$
- $N = 1 \Rightarrow$ Triangular (linear)
- $N = 2 \Rightarrow \mathsf{Quadratic}$
- $N=3 \Rightarrow \mathsf{Cubic}$

Roll-Off Rate:

As N increases, the window becomes smoother. $w_{\mathsf{Spline}(N)}$ is (N-1)-times continuously differentiable, and has roll-off rate 6(N+1) dB per octave.

Spline Window Examples



Miscellaneous Windows

Bartlett ("Triangular")

$$w(n) = w_R(n) \left[1 - \frac{|n|}{(M-1)/2} \right]$$

- Convolution of two half-length rectangular windows
- Window transform is $sinc^2 \implies$
 - First sidelobe twice as far down as rect (-26 dB)
 - Main lobe twice as wide as that of a rectangular window having the same length (same as that of a half-length rect used to make it)
- Often applied to sample correlations of finite data
- Also called the "tent function"
- ullet M-1 often replaced by M or M+1 to avoid including endpoint zeros

Using Any Window as a Tapering Function

Sometimes we need a wide rectangular window with tapered edges:

- 1. Split any window into halves, inserting the rectangle between
- 2. *Convolve* the rectangular window with any desired window

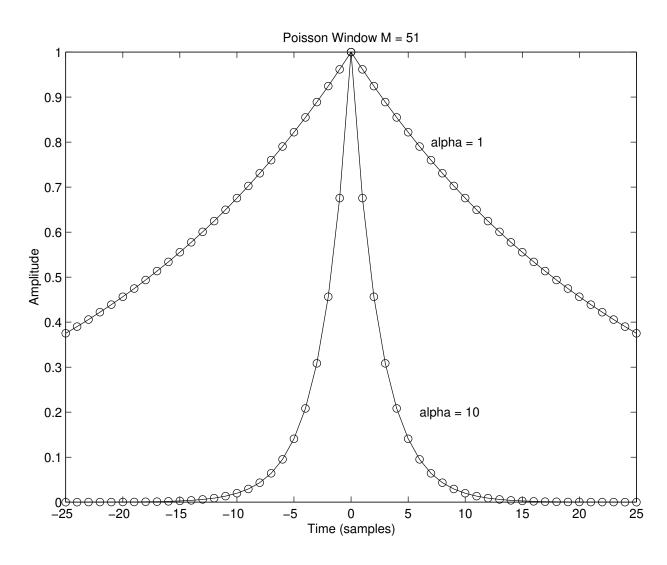
Method 2 preserves *smoothness* of the tapering window and hence its *roll-off rate*.

Poisson ("Exponential")

$$w_P(n) = w_R(n)e^{-\alpha \frac{|n|}{(M-1)/2}}$$

where α determines the time constant τ :

$$\frac{\tau}{T} = \frac{M-1}{2\alpha} \quad \text{samples}$$



Poisson Window in System Identification

In the z-plane, the Poisson window has the effect of contracting the spectrum toward zero inside unit circle. Consider an *infinitely long* Poisson window (no truncation by a rectangular window w_R) applied to a causal signal h(n) having z transform H(z):

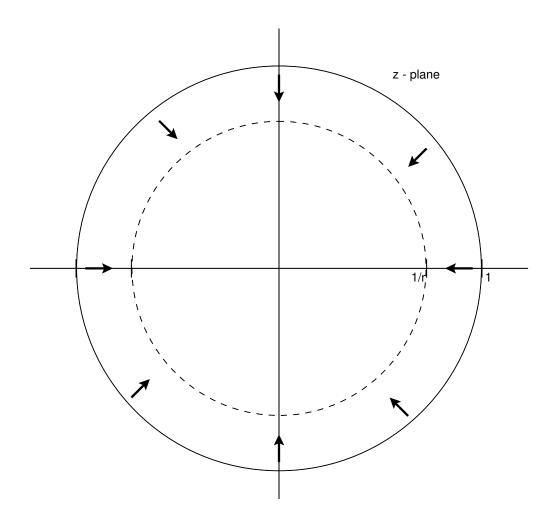
$$H_{P}(z) = \sum_{n=0}^{\infty} [w(n)h(n)]z^{-n}$$

$$= \sum_{n=0}^{\infty} \left[h(n)e^{-\frac{\alpha n}{M/2}}\right]z^{-n} \quad \text{(let } r \stackrel{\Delta}{=} e^{\frac{\alpha}{M/2}}\text{)}$$

$$= \sum_{n=0}^{\infty} h(n)z^{-n}r^{-n} = \sum_{n=0}^{\infty} h(n)(zr)^{-n}$$

$$= H(zr)$$

- \bullet Unit-circle response moved to |z|=1/r<1
- Marginally stable poles now decay as $r^{-n} = e^{-\alpha n/(M/2)}$



The Poisson window can be useful for impulse-response modeling by poles and/or zeros ("system identification"). In such applications, the window length is best chosen to include substantially all of the impulse-response data.

Hann-Poisson ("No Sidelobes")

$$w(n) = \frac{1}{2} \left[1 + \cos \left(\pi \frac{n}{(M-1)/2} \right) \right] e^{-\alpha \frac{|n|}{(M-1)/2}}$$

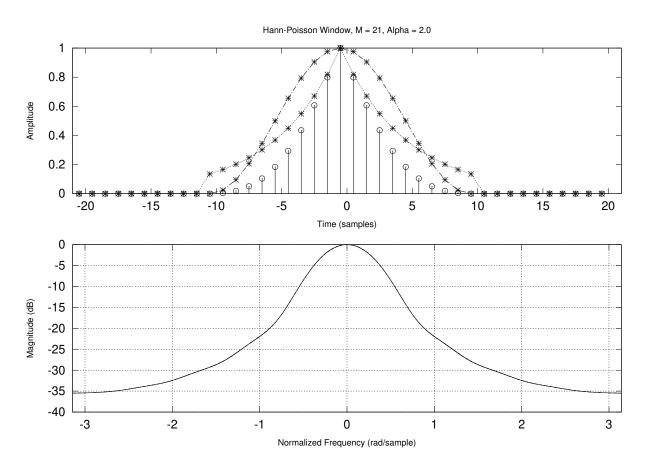
- Poisson window times Hann window (exponential times raised cosine)
- "No sidelobes" for $\alpha \geq 2$
- Valuable for "hill climbing" optimization methods (gradient-based)

Matlab:

```
function [w,h,p] = hannpoisson(M,alpha)
%HANNPOISSON - Length M Hann-Poisson window
```

```
Mo2 = (M-1)/2; n=(-Mo2:Mo2)';
scl = alpha / Mo2;
p = exp(-scl*abs(n));
scl2 = pi / Mo2;
h = 0.5*(1+cos(scl2*n));
w = p.*h;
```

Hann-Poisson Window and Transform



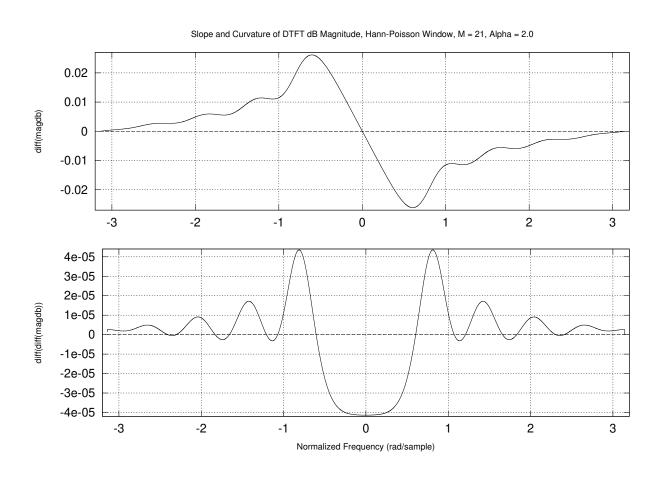
https://ccrma.stanford.edu/~jos/Windows/Hann_Poisson_Window_Transform.html

Question:

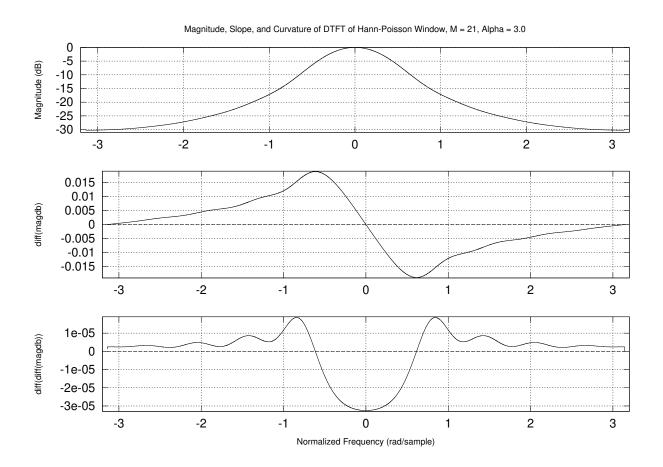
How can a truncated *anything* avoid having ripples in its spectrum? ("Gibbs ripples")

Let's look at the *derivatives* of the window:

Hann-Poisson Slope and Curvature



Slope and Curvature for Larger Alpha



Maximum Main-Lobe Energy Window: DPSS

Question: How do we use all M degrees of freedom (sample values) in an M-point window w(n) to obtain $W(\omega) \approx \delta(\omega)$ in some optimal sense?

That is, we wish to perform the following optimization:

$$\max_{w} \left[\frac{\text{main lobe energy}}{\text{total energy}} \right]$$

In the continuous-time case $[\omega \in (-\infty, \infty)]$, this problem is solved by a *prolate spheroidal wave function*, an eigenfunction of the integral equation

$$\int_{-\omega_c}^{\omega_c} W(\nu) \frac{\sin[\pi D \cdot (\omega - \nu)]}{\pi(\omega - \nu)} d\omega = \lambda W(\omega), \ |\omega| \le \omega_c$$

where D is the nonzero time-duration of w(t) in seconds.

Interpretation:

$$\begin{split} & \left[\mathrm{Chop}_{2\omega_c}(W) \right] * \left[D \operatorname{sinc}(D\omega) \right] \\ &= \mathrm{FT}(\mathrm{Chop}_D(\mathrm{IFT}(\mathrm{Chop}_{2\omega_c}(W)))) \; = \; \lambda W \end{split}$$

where $Chop_D(w)$ is a rectangular windowing operation which zeros w outside the interval $t \in [-D/2, D/2]$.

W is thus the bandlimited extrapolation of its main lobe $(\omega \in [-\omega_c, \omega_c])$

The optimal window transform W is an eigenfunction of this operation sequence corresponding to the *largest* eigenvalue.

The resulting optimal window w has maximum main-lobe energy as a fraction of total energy.

It may be called the *Slepian window*, or *prolate spheroidal* window in the continuous-time case.

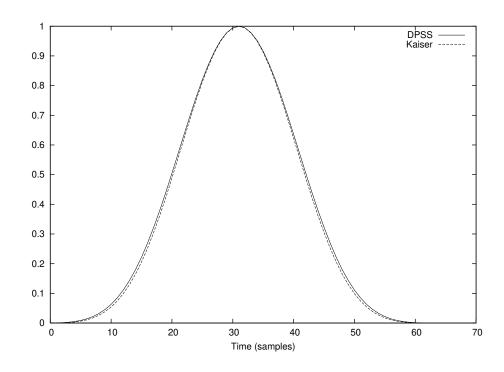
In discrete time, we need *Discrete Prolate Spheroidal Sequences (DPSS)*, eigenvectors of the following symmetric Toeplitz matrix constructed from a sampled sinc function:

$$S[k, l] = \frac{\sin[\omega_c T(k-l)]}{k-l}, \quad k, l = 0, 1, 2, \dots, M-1$$

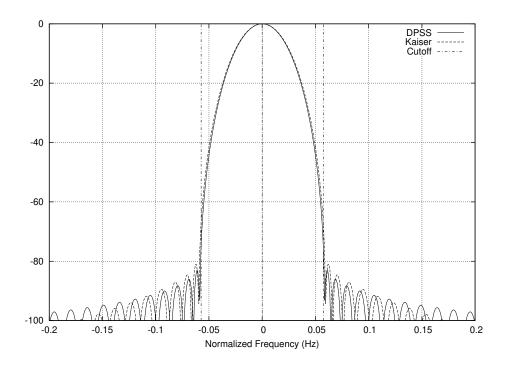
- ullet M= window length in samples
- $\omega_c = \text{main-lobe cut-off frequency (rad/sec)}$
- \bullet T= sampling period in seconds.

The DPSS window (digital Slepian window) is then given by the eigenvector corresponding to the largest eigenvalue.

Matlab for the DPSS Window



Kaiser and DPSS Window Transforms Compared



- Kaiser \approx DPSS
- DPSS window has a slightly narrower main lobe
- DPSS window has lower overall side-lobe levels
- Kaiser window side lobes roll off faster
- Otherwise they are very similar

Kaiser (Kaiser-Bessel)

Kaiser discovered a very good approximation to prolate spheroidal wave functions using Bessel functions:

$$w_K(n) \stackrel{\Delta}{=} \left\{ \begin{array}{l} \frac{I_0\left(\beta\sqrt{1-\left(\frac{n}{M/2}\right)^2}\right)}{I_0(\beta)}, \ -\frac{M-1}{2} \leq n \leq \frac{M-1}{2} \\ 0, \ \qquad \text{elsewhere} \end{array} \right.$$

$$w_K(n) \stackrel{\Delta}{=} w_R(n) \frac{I_0 \left(\beta \sqrt{1 - \left(\frac{n}{M/2}\right)^2}\right)}{I_0(\beta)}$$

This is called the Kaiser (or Kaiser-Bessel) window.

The Fourier transform of the Kaiser window $w_K(t)$ (where t is treated as continuous) is given by

$$W(\omega) = \frac{M}{I_0(\beta)} \frac{\sinh\left(\sqrt{\beta^2 - \left(\frac{M\omega}{2}\right)^2}\right)}{\sqrt{\beta^2 - \left(\frac{M\omega}{2}\right)^2}}$$
$$= \frac{M}{I_0(\beta)} \frac{\sin\left(\sqrt{\left(\frac{M\omega}{2}\right)^2 - \beta^2}\right)}{\sqrt{\left(\frac{M\omega}{2}\right)^2 - \beta^2}}$$

where I_0 is the zero-order modified Bessel function of the first kind.

Modified Bessel Function of the 1st Kind

A series expansion for the order zero, modified Bessel function of the first kind is given by

$$I_0(x) = \sum_{k=0}^{\infty} \left[\frac{(x/2)^k}{k!} \right]^2$$

Compare this with

$$e^{x/2} = \sum_{k=0}^{\infty} \frac{(x/2)^k}{k!}.$$

Kaiser-Bessel Window Notes

$$w_K(n) \stackrel{\Delta}{=} w_R(n) \frac{I_0 \left(\beta \sqrt{1 - \left(\frac{n}{M/2}\right)^2}\right)}{I_0(\beta)}$$

- "Closed form" (given I_0 series or table)
- \bullet Reduces to rectangular window for $\beta=0$
- Asymptotic roll-off is 6 dB/octave
- For $\beta\gg 0$, first null in window transform is at $\omega_0\approx 2\beta/M$ $\Rightarrow \beta=M\omega_0/2$
- ullet Sometimes the Kaiser window is parameterized by lpha:

$$\beta \stackrel{\Delta}{=} \pi \alpha$$

Kaiser Window Time-Bandwidth Product

• Define the main-lobe "cutoff frequency" as half-way to the first zero in $W(\omega)$:

$$\omega_c = \frac{\omega_0}{2} = \frac{\beta}{M} = \frac{\pi \alpha}{M}$$

Then

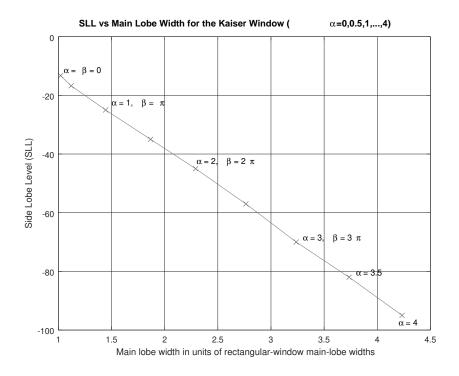
$$eta = M\omega_c = rac{1}{2}M\cdot(2\omega_c)$$

$$= rac{1}{2} \, ext{duration (samples)} \, imes \, ext{bandwidth (rad/sample)}$$
 $lpha = rac{eta}{\pi} = rac{2eta}{2\pi}$

$$= ext{duration (samples)} \, imes \, ext{bandwidth (cycles/sample)}$$

- $\beta=M\omega_c T$ is equal to 1/2 'time-bandwidth product' $\beta=\frac{1}{2}\Delta t\cdot\Delta\omega\Rightarrow \quad \alpha=\Delta t\cdot\Delta f$
- In this definition of time-bandwidth product, the "cut-off frequency ω_c of the Kaiser-window transform is defined as *half* of the first null frequency, *i.e.*, $\omega_c = \omega_0/2$.
- β trades off side lobe level for main lobe width larger $\beta \Rightarrow$ lower S.L.L., wider mainlobe

Kaiser Side-Lobe Level vs. Main-Lobe Width

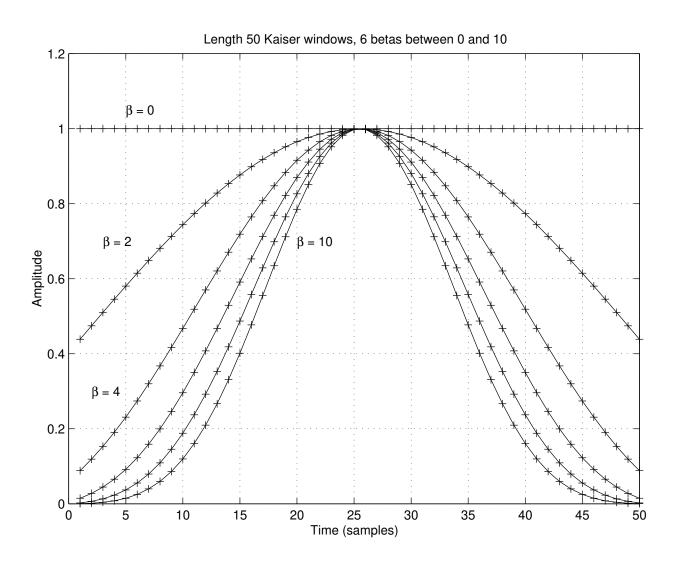


Mathematica Demonstration:

http://demonstrations.wolfram.com/KaiserWindowTransform/

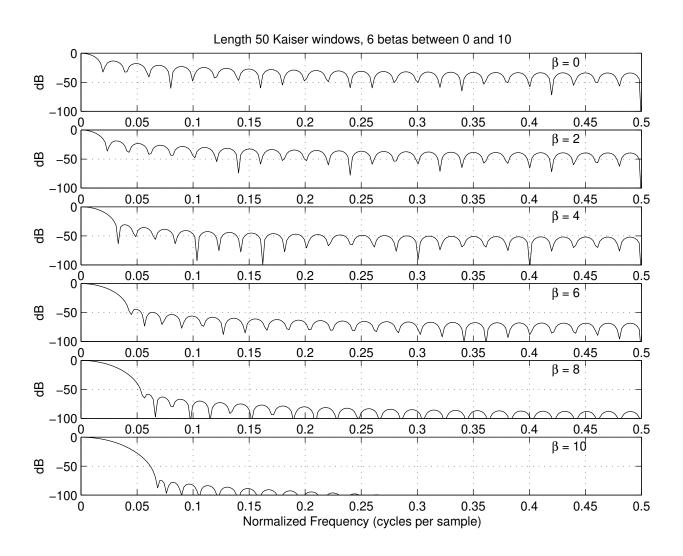
Kaiser Window Examples

$$\beta = [0, 2, 4, 6, 8, 10]$$



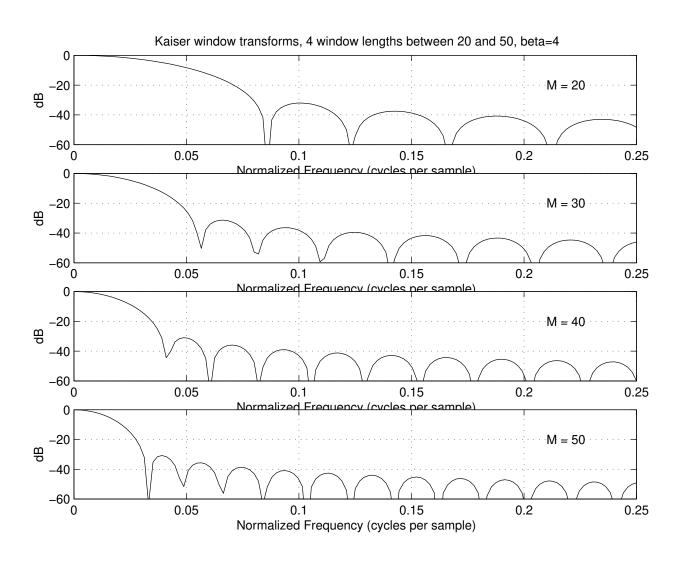
Kaiser Window Transform Examples

$$\beta = [0, 2, 4, 6, 8, 10]$$



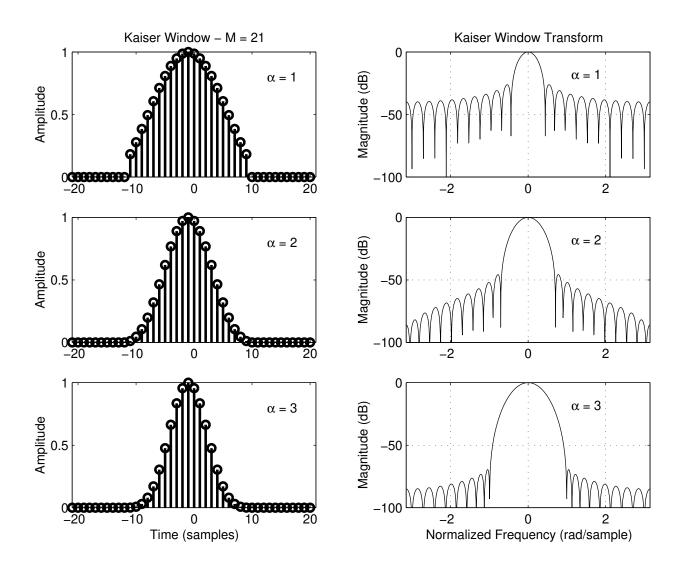
Kaiser Window: Different Lengths M

$$M = [20, 30, 40, 50]$$

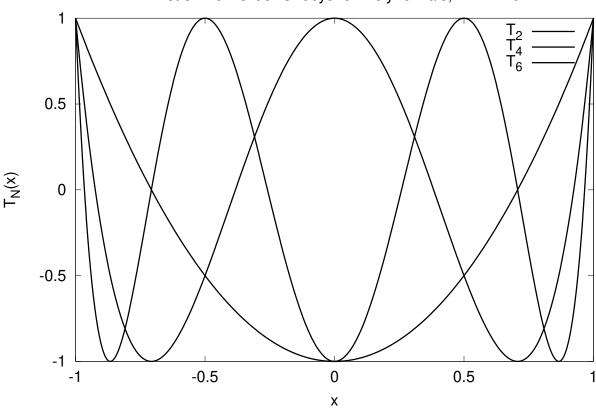


More Kaiser-Window Examples

$$\alpha = [1, 2, 3] \quad (\beta = [\pi, 2\pi, 3\pi])$$



Chebyshev Polynomials



First 3 Even-Order Chebyshev Polynomials, N = 2:2:6

The nth Chebyshev polynomial may be defined by

$$T_n(x) = \begin{cases} \cos[n\cos^{-1}(x)], & |x| \le 1\\ \cosh[n\cosh^{-1}(x)], & |x| > 1 \end{cases}.$$

Clearly, $T_0(x) = 1$ and $T_1(x) = x$.

Using the double-angle trig formula

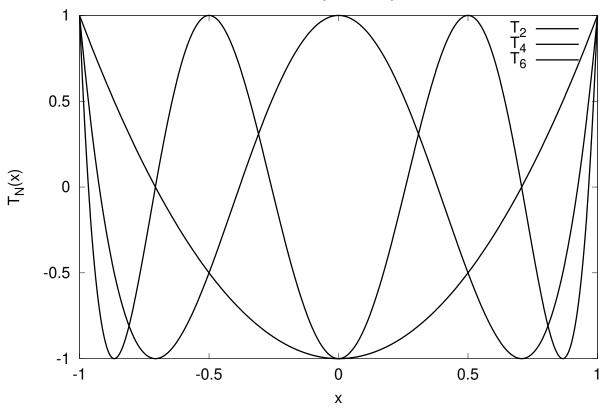
 $cos(2\theta) = 2cos^2(\theta) - 1$, it can be verified that

$$T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)$$
 $(n \ge 2)$

Chebyshev Polynomial Properties

- ullet $T_n(x)$ is an nth-order polynomial in x
- ullet $T_n(x)$ is an even function when n is an even integer, and odd when n is odd
- $T_n(x)$ has n zeros in the open interval (-1,1), and n+1 extrema in the closed interval [-1,1]
- $T_n(x) > 1$ for x > 1

First 3 Even-Order Chebyshev Polynomials, N = 2:2:6



$$T_n(x) = \cos[n\cos^{-1}(x)], \quad |x| \le 1$$

Dolph-Chebyshev Window

Minimize the Chebyshev norm of the side lobes, e.g.,

$$\begin{aligned} & \min_{w,\sum w=1} \| \operatorname{sidelobes}(W) \|_{\infty} \\ & \equiv & \min_{w,\sum w=1} \left\{ \max_{\omega > \omega_c} |W(\omega)| \right\} \end{aligned}$$

Alternatively, *minimize main lobe width* subject to a sidelobe spec:

$$\min_{w,W(0)=1} (\omega_c) \bigg|_{|W(\omega)| \le c_{\alpha}, \forall |\omega| \ge \omega_c}$$

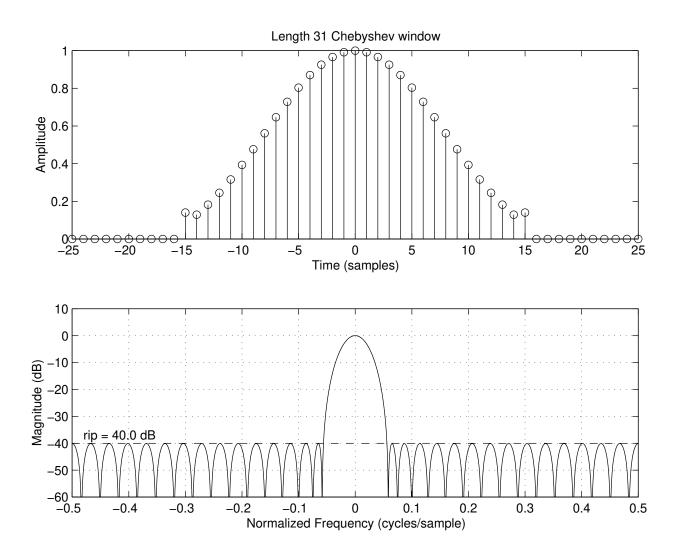
Closed-Form Window Transform (Dolph):

$$W(\omega_k) = \frac{\cos\left\{M\cos^{-1}\left[\Gamma\cos\left(\frac{\pi k}{M}\right)\right]\right\}}{\cosh\left[M\cosh^{-1}(\Gamma)\right]}, \quad (|k| \le M - 1)$$

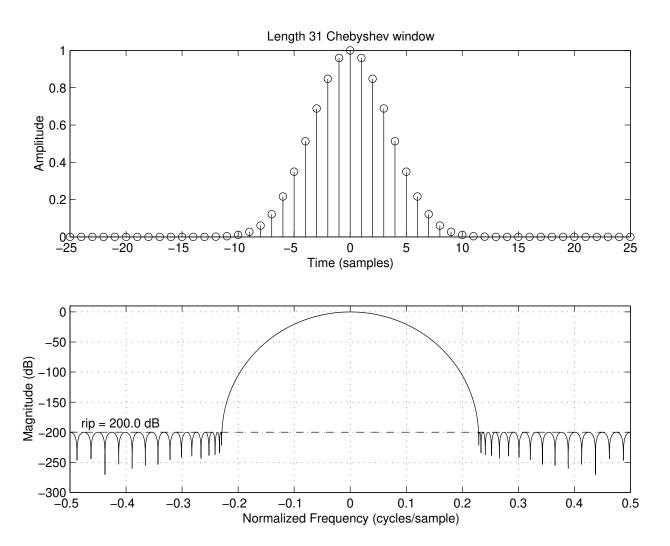
$$\Gamma = \cosh\left[\frac{1}{M}\cosh^{-1}(10^{\alpha})\right] \ge 1, \quad (\alpha \approx 2, 3, 4)$$

- Window $w = \mathrm{IDFT}(W)$ [zero-centered case] or IDFT of $(-1)^k W(\omega_k)$ for causal case
- α controls sidelobe level ("stopband ripple"): Side-Lobe Level in dB = -20α .
- smaller ripple \Rightarrow larger ω_c
- see matlab function "chebwin(M,ripple)"

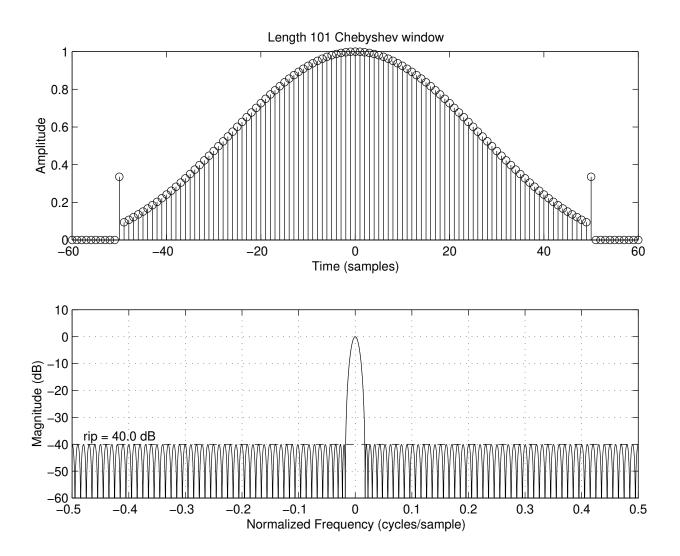
Dolph-Chebyshev Window, Length 31, Ripple -40 dB



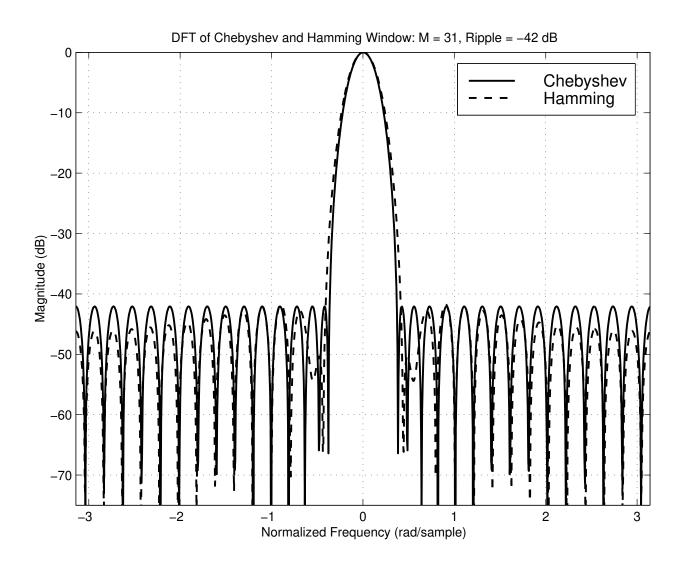
Dolph-Chebyshev Window, Length 31, Ripple -200 dB



Dolph-Chebyshev Window, Length 101, SLL -40 dB



Dolph-Chebyshev and Hamming Windows Compared



For the comparison, we set the ripple parameter for chebwin to $42~\mathrm{dB}$:

window = [chebwin(31,42), zeros(1,1024-31)];

Gaussian

The Gaussian "bell curve" is the only smooth function that transforms to itself:

$$\frac{1}{\sigma\sqrt{2\pi}}e^{-t^2/2\sigma^2} \leftrightarrow e^{-\omega^2/2(1/\sigma)^2}$$

It also achieves the minimum time-bandwidth product

$$\sigma_t \sigma_\omega = \sigma \times (1/\sigma) = 1$$

when "width" of a function is defined as the square root of its second central moment. For even functions w(t),

$$\sigma_t \stackrel{\Delta}{=} \sqrt{\int_{-\infty}^{\infty} t^2 w(t) dt}.$$

- Since the true Gaussian function has infinite duration, in practice we must window it with some finite window.
- ullet Philippe Depalle suggests using a triangular window raised to some power lpha for this purpose.
 - This choice preserves the absence of sidelobes for sufficiently large α .
 - It also preserves non-negativity of the transform

The Gaussian Window in Spectral Modeling

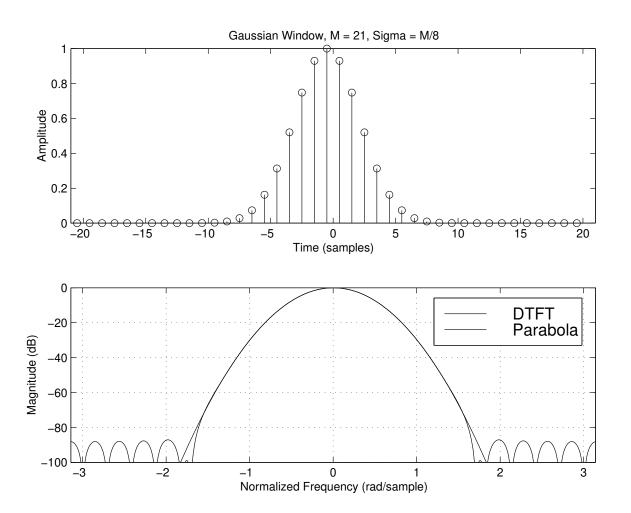
Special Property: On a dB scale, the Gaussian is quadratic \Rightarrow parabolic interpolation of a sampled Gaussian transform is exact.

Conjecture: Quadratic interpolation of spectral peaks is generally more accurate on a *log-magnitude scale* (e.g., dB) than on a linear magnitude scale. This has been verified in a number of cases, and no counter-examples are yet known. Exercise: Prove this is true for the rectangular window.

Matlab for the Gaussian Window

```
function [w] = gausswin(M,sigma)
n=(-(M-1)/2:(M-1)/2);
w = exp(-n.*n./(2*sigma.*sigma));
```

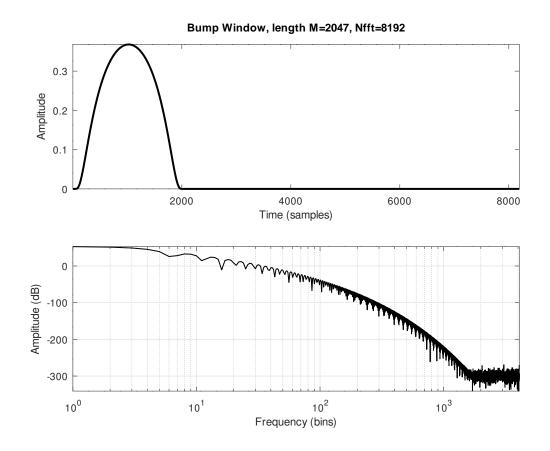
Gaussian Window and Transform



Bump Window

$$w(t) = \begin{cases} e^{-\frac{1}{1-t^2}} & |t| < 1, \\ 0 & \text{otherwise} \end{cases}$$

- Infinitely differentiable everywhere (then sample)
- Roll-off rate unbounded (faster than any polynomial)
- Aliasing progressively slows the decay



More Windows

There is a nice collection of window definitions and citations on Wikipedia: https://en.wikipedia.org/wiki/Window_function

Optimal Windows

Generally we desire

$$W(\omega) \approx \delta(\omega)$$

- Best results are obtained by formulating this as an *FIR filter design problem*.
- In general, both time-domain and frequency-domain specifications are needed.
- Equivalently, both *magnitude* and *phase* specifications are necessary in the frequency domain.

Optimal Windows for Audio Coding

Recently, numerically optimized windows have been developed by Dolby which achieve the following objectives:

- Narrow the window in time
- Smooth the onset and decay in time
- Reduce sidelobes below the worst-case masking threshold

Conclusion

- There is rarely a closed form expression for an optimal window in practice.
- The hardest task is formulating the *ideal error* criterion.
- ullet Given an error criterion, it is usually straightforward to minimize it numerically with respect to the window samples w.