Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Dolph-Chebyshev Window

Minimize the Chebyshev norm of the side lobes, e.g.,

\begin{eqnarray*}
\displaystyle
&& \mbox{min}_{w,\sum w=1} \left\Vert\,\hbox{sidelobes($W$)}\,\right\Vert _\infty\\ [5pt]
&\equiv&
\mbox{min}_{w,\sum w=1} \left\{\mbox{max}_{\omega>\omega_c} \left\vert W(\omega)\right\vert\right\}
\end{eqnarray*}

Alternatively, minimize main lobe width subject to a sidelobe spec:

$\displaystyle \displaystyle
\left. \min_{w,W(0)=1}(\omega_c) \right\vert _{\,\left\vert W(\omega)\,\right\vert \leq\, c_\alpha,\; \forall \vert\omega\vert\geq\omega_c}
$

Closed-Form Window Transform (Dolph):

\begin{eqnarray*}
W(\omega_k) &=& \frac{\cos\left\{M\cos^{-1}\left[\Gamma\cos\left(\frac{\pi k}{M}\right)
\right]\right\}}{\cosh\left[M\cosh^{-1} (\Gamma)\right]}, \quad (\vert k\vert\leq M-1) \\
\Gamma &=& \cosh \left[\frac{1}{M}\cosh^{-1}(10^\alpha)\right] \;\ge\;1, \qquad (\alpha\approx 2,3,4)
\end{eqnarray*}


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[Comment on this page via email]

``FFT Windows'', by Julius O. Smith III and Bill Putnam, (From Lecture Overheads, Music 421).
Copyright © 2020-06-27 by Julius O. Smith III and Bill Putnam
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]