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FIR Digital Filter Design

In a previous lecture, we looked at many windows, and
examined their properties. Today, we are going to see
how these windows can be used to design Finite Impulse
Response (FIR) digital filters.

FFT processors implement long FIR filters more
efficiently than any other method (using Overlap-Add).

We need flexible ways to design all kinds of FIR filters for
use in FFT processors.

See the FIR Filter Demos1 by java@falstad.com

1https://www.falstad.com/dfilter/
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Ideal Lowpass Filter

Amplitude Response:

fcFrequency0 fs/2
0
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G
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n

• Gain = 1 for f < fc

• Gain = 0 for f > fc

• fc = “cut-off frequency” (Hz)

• fs = “sampling frequency” (Hz)

• Signals and filter assumed real
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Impulse Response of Ideal LPF

hideal(n)
∆
= DTFT−1n

(
Hideal

)

∆
=

1

2π

∫ ωc

−ωc

ejωndω

=
sin(ωcn)

πn

= 2fcsinc(2fcn), n ∈ Z

Problems:

• Infinitely long

• Non-causal

• Cannot be shifted to make it causal

• Cannot be implemented in practice

Conclusion:

• We must accept some compromise(s) in the design of
any practical lowpass filter.

• Managing such trade-offs is the topic of digital filter
design.
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Optimal (but Poor) Least-Squares
Impulse Response Design

Let

• h(n) = ideal filter impulse response.

• ĥ(n) = length L causal FIR filter (to be designed).

Sum of squared errors:

J2(ĥ)
∆
=

∞∑

n=−∞

∣
∣
∣h(n)− ĥ(n)

∣
∣
∣

2

=

L−1∑

n=0

∣
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∣h(n)− ĥ(n)

∣
∣
∣

2

+ c2

where c2
∆
=
∑−1

n=−∞ |h(n)|
2 +
∑∞

n=L |h(n)|
2 does not

depend on ĥ. Note that J2(ĥ) ≥ c2.

Result: The error is minimized (in the least-squares
sense) by simply matching the first L terms in the desired
impulse response.

Optimal least-squares FIR filter:

ĥ(n)
∆
=

{

h(n), 0 ≤ n ≤ L− 1

0, otherwise

Also optimal under any Lp norm with any error weighting:

Jp(ĥ) =

L−1∑

n=0

w(n)
∣
∣
∣h(n)− ĥ(n)

∣
∣
∣

p

+ cp ≥ cp
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Length L = 30 Least-Squares LPF Design
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• Desired cut-off frequency is fc = 1/4

• Stopband attenuation only around 10 dB

• Passband gain has a “peak” near cut-off

• Filter is quite poor for audio use

• Ĥ = H ∗ asincL
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Length L = 71 Least-Squares LPF Design
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Length 71 FIR Amplitude Response
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• Stopband attenuation still only around 10 dB

• Corner-frequency peak is higher, though narrower

• “Gibb’s phenomenon” in the frequency domain

What we’re doing wrong:

• Desired filter specification asks for too much
(e.g, an infinite roll-off rate).

• Time-domain-least-squares is a poor choice of error
criterion for audio work.
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Length L = 71 Optimal Chebyshev LPF Design

firpm(70,[0 0.5 0.6 1],[1 1 0 0]);
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Length 71 FIR Amplitude Response
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• Stopband attenuation better than 60 dB

• No corner-frequency peak (Gibbs overshoot)

• Transition region from passband to stopband critical

• Error is “equiripple” in both stopband (visible) and
passband (not visible)

• Impulse response is slightly “impulsive” at the
endpoints (not shown).
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Lowpass Filter Specifications

δs

δp

TW

Ideal lowpass

filter response1

0

1 δ+ p

1 δ− p

0 ωp ωsFrequency

Amplitude

Lowpass Filter Specifications

Pass-band Stop-band

Transition

band

• δs : stopband ripple (≤ 0.001 = −60 dB typical)

• δp : passband ripple (≤ 0.1 dB typical)

• ωs: stopband edge frequency

• ωp: passband edge frequency

• TW: transition width = ωs − ωp

• SBA: stop-band attenuation = −20 log(δs)
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Ideal Lowpass Filter

The ideal lowpass filter is defined by the following
specifications:

• ωs = ωp = ωc
∆
= 2πfc ⇒ TW = 0

• δp = δs = 0⇒ SBA =∞
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Example Ripple Calculations in Matlab

Let’s first consider the passband ripple spec, ±0.1 dB.
Converting that to linear ripple amplitude gives, in
Matlab,

format long;

dp=10^(0.1/20)-1

dp =

0.01157945425990

Let’s check it:

>> 20*log10(1+dp)

ans =

0.10000000000000

>> 20*log10(1-dp)

ans =

-0.10116471483635

Ok, close enough. Now let’s set the stopband ripple to
1/10 times the passband ripple and see where we are:

>> ds=dp/10;

>> 20*log10(ds)

ans =

-58.72623816882052
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So, that’s about 60 dB stop-band rejection, which is not
too bad.

Setting the stopband ripple to 1/100 times the passband
ripple adds another 20 dB of rejection:

>> ds=dp/100;

>> 20*log10(ds)

ans =

-78.72623816882052

which is close to the “high fidelity” zone of 80dB SBA

• In FIR filter-design functions such as firpm, the
weighting for each band is proportional to one over
the ripple amplitude in that band. (We saw previously
that the ripple amplitude is δ/W (ωk) where δ is
minimized.)

• Thus, for a unity-gain lowpass-filter, a weighting of 1
passband and 10 in the stopband yields close to 60
dB of stopband attenuation, as derived above.

• The function firpmord in Matlab finds the order
needed to achieve a given set of (more user friendly)
specifications.
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Frequency Sampling Method for FIR
Filter Design

The frequency-sampling method for FIR filter design is
perhaps the simplest and most direct technique
imaginable when a desired frequency response has been
specified.

• It consists simply of uniformly sampling the desired
frequency response, and performing the inverse DFT
to obtain the corresponding (finite) impulse response.

• The resulting frequency response is usually not
optimal between samples

• When the desired frequency-response is undersampled
(typical) the impulse response is time aliased

• It is important to compare the originally desired
frequency response to the FFT of the zero-padded
designed impulse response (simulated DTFT)
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Window Method for FIR Filter Design

• In practical FFT processors, we are limited to a finite
duration impulse response (FIR filters).

• An “obvious” method for FIR filter design is to simply
window the ideal impulse response, just like we
window ideal sinusoids in spectrum analysis:

ĥw(n)
∆
= w(n) · hideal(n)

where w is a zero centered window of length M (odd)

• We saw that the rectangular window is optimal in the
least-squares sense, but a poor choice for typical
audio filter design. What about other windows?

• Windowing is multiplication in the time domain ↔
convolution in the frequency domain.

• Thus, in the window method, the ideal frequency
response is convolved with the window transform:

Ĥw(ω) = (W ∗Hideal)(ω)

The convolution ‘smears’ the response, introducing
deviations in both the pass-band and stop-band.
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Example

A typical windowed ideal lowpass filter response is
depicted in the following diagram:
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• At this point in the design, we have a non-causal
(zero centered) filter.

• In order to implement this in a real time situation, we
need to shift the filter by an amount equal to half its
length.

ĥcausal(n) = ĥ

(

n−
M − 1

2

)

• This shift in the time domain results in a linear phase
term in the frequency domain:

Ĥcausal(ω) = e−jω
M−1
2 Ĥ(ω)
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Examples

• length 25 FIR filter

• ωc = π/4

• hideal(n) =
sin(ωcn)

πn n ∈ Z

• We will examine several windows:
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Amplitude Response of Examples, M = 25
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• If the pass band width is set to zero, we obtain the
respective window transforms
(asinc, 3 asincs, asinch→asinc)

• Otherwise we see the convolution of the window
transform with the ideal rectangular lowpass
frequency response ⇒

• more stopband attenuation

• wider passband
(desired passband extended by transition-band on
each side that is one main-lobe wide)
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Effect of Changing Filter Length, M = 11, 15, 41

−3 −2 −1 0 1 2 3
−70

−60

−50

−40

−30

−20

−10

0

Hamming Window

Frequency (radians/sample)

 A
m

p
lit

u
d

e
 −

 d
B

19

Window Method in the Frequency Domain

(1) Ĥ(ω) = (W ∗H)(ω) =

∫ π

−π

W (ν)H(ω − ν) dν

= 〈W,Shiftω{Flip(H)}〉

For the ideal lowpass filter:

• Main-lobe is widened by convolution with rectangle to
become the pass band

• Side-lobes are convolved with the rectangle to form
the stop band (adjacent-sidelobe partial cancellation
occurs, resulting SBA<sidel-lobe-level, except for
dc-pass where SBA=SLL)

(2) Ĥ(ω) = (H ∗W )(ω) =

∫ π

−π

H(ν)W (ω − ν) dν

= 〈H,Shiftω{Flip(W )}〉

For the ideal lowpass filter:

• Passband is widened by convolution with main lobe to
give a transition band

• Transition band is clearly one main-lobe-width wide

• Stop-band made from sliding width-2ωc integral over
the window side-lobes
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Other Types of Filters

Ideal highpass, bandpass, and bandstop filters can all be
considered as modifications of an ideal lowpass filter.

Highpass Filter from Lowpass

A highpass filter can be constructed by shifting a
lowpass filter by an amount equal to half the sampling
rate.

i

i

ω

ω

π

π

0

0
|H|

|H|

2π

2π

−π

−π

−2π

−2π

This is equivalent to a modulation by e−jπn in the time
domain. Hence,
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Hhp(ω) = Shiftπ{Hlp(ω)} = Hlp(ω − π) (T = 1)

↔ hhp(n) = hlp(n)e
−jπn

= hlp(n)(−1)
n
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Summarizing:

• To design a high-pass filter, first design a finite
length, causal lowpass filter

• Use a lowpass cut-off frequency equal to
π−(highpass cut-off)

• Design the lowpass filter as in the previous section

• Modulate the impulse reponse by (−1)n to exchange
dc and fs/2

Alternatively, if the passband of the prototype lowpass
filter Ĥ(ω) is very flat or equal-ripple about unity gain, a
highpass filter can be designed by simply subtracting
from 1:

Hhp(ω)
∆
= 1−Hlp(ω)

↔ δ(n)− hlp(n)
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Bandpass Filter from Lowpass

A bandpass can be derived by designing the appropriate
lowpass filter (with cut-off frequency equal to half the
width of the bandpass), and then modulating it to the
desired center frequency ωc. In the frequency domain,
this means shifting two copies of the lowpass prototype,
one to the left by −ωc, and the other to the right by ωc.
The two shifted copies are added together to give a
bandpass filter having a real impulse response.

ω

ω

0

0
|H|

|H|

π

πωc

ω0 ωuωl−π

−π −ωc

−ω0

To design a bandpass filter:

• Design a lowpass prototype filter of the desired width
(cut-off ωc = ωu − ω0 = (ωu − ωl)/2)

• Shift to the left and right by ω0 and sum:
hbp(n) = 2 cos(nω0)hlp(n)
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Band-Stop Filters

A bandstop filter can be constructed by first designing a
bandpass with similar specifications. As for highpass
design, we have two cases (π-rotation and subtraction
from 1 in the frequency domain).
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“FIR Paint”
(FIR Filter-Design App)

• Start with basic FOSS “paint program”

• Drawing canvas includes axes for drawing a desired
amplitude response

• Provide menu/buttons for choosing FIR length M
and window type (Hamming, Blackman, etc.)

• Mouse cursor becomes the chosen window transform

• When “drawing”, drop a mouse-cursor image each
“FFT bin”

• Instead of overwriting with each mouse-cursor-image,
sum it into the canvas (replacing any previous version
for that one bin)

• “What you see is what you get” - really!

• Should of course display on dB scale or better

• Set as graphical EQ for the computer’s sound output?
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Summary of the Window Method

Basic Idea:

ĥ
∆
= w · h ←→ Ĥ = W ∗H ≈ δ ∗H = H

For the Ideal Lowpass Filter:

• Start with the ideal impulse response (e.g., sinc
function):

• h(t) = sin(πt/T )/(πt/T )

• Infinite duration

• Non-causal

• Window the infinite duration sinc to get a
finite-duration (FIR) filter:

• Window length determines transition width
(≈ main lobe width)

• Window type determines the sidelobe level (SLL)

• Rectangular window yields the optimal filter in the
unweighted least squares sense (not usually great)

• Shift the noncausal (zero centered) filter to get a
causal (linear-phase) filter

• The linear-phase slope equals half the filter length
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• Other types of filters (highpass, bandpass, bandstop)
are designed by first designing a low pass, and
applying transformations

Important Points (Window Method)

• Easy to design

• Can design extremely long FIR filters without
numerical problems

• Not usually optimum in any sense

• See fir1 for FIR
lowpass/highpass/bandpass/bandstop by the window
method in Octave and/or the Matlab Signal
Processing Tool Box

• See fir2 for more general FIR filter design by the
window method in Octave and/or the MSPTB
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Remarks (Window-Method)

• Transition width TW (≈ main lobe width) determined
by window length M and window type:

• As window gets longer, its main lobe narrows

• Narrower main lobe ⇒ narrower transition band

• Tighter specs demand longer filters

• Length M ∝ K/TW in general, where K = 1 for
rectangular, 2 for generalized Hamming, 3 for
Blackman, etc.

• Pass-band and stop-band ripple are determined by
window side lobes

• We do not have individual control over passband
and stopband ripple (limitation of window method)

• Ripple determined by window used

• Ripple normally largest around transition band
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Hilbert Transform Filter Design Example:
A Case Study in FIR Filter Design

Design Example:

• Ideal Single-Sideband Filter (Hilbert transformer)

• Window Method using Kaiser Window

• Optimal Chebyshev using Remez Exchange
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Problem Statement

• Design a “negative-frequency filter” which converts a
real signal into its complex “analytic signal”
counterpart by filtering out negative frequencies

• Equivalently, design a “single sideband” (SSB) filter
which outputs a single-sideband signal in response to
a complex-conjugate pair of sidebands (a Hermitian
spectrum)

• We could also call it a “positive-frequency-pass” filter

• The imaginary part of such a filter is called a
Hilbert transform filter

• The ideal Hilbert transform is an allpass filter that
delays positive-frequency components by 90 degrees,
and advances negative-frequency components by 90
degrees
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Hilbert Transform

y(t)
∆
= (hi ∗ x)(t) (Hilbert transform of x)

hi(t)
∆
=

1

πt
(Hilbert transform “kernel”)

Hi(ω)
∆
=







−j, ω > 0

j, ω < 0

0, ω = 0

(Hilbert frequency response)

xa(t)
∆
= x(t) + jy(t) (Analytic signal from x)

=
1

π

∫ ∞

0

X(ω)ejωtdω (Note: Lower limit usually −∞)

Proof:

Xa(ω) = X(ω) + jY (ω) (By linearity of Fourier transform)

= X+ +X− (Apply frequency response)
+j[−jX+ + jX−]

= 2X+(ω)
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Ideal Bandlimited Impulse Response

Since we are working with sampled data, the ideal
single-side-band filter impulse response is

h(n) = IDTFTn(u)
∆
=

1

2π

∫ π

−π

u(ω)ejωndω

where u(ω) is a unit step function in the frequency
domain:

u(ω)
∆
=

{

1, ω ≥ 0

0, ω < 0

We can evaluate the IDTFT directly as follows:

h(n) =
1

2π

∫ π

0

ejωndω =
1

2πjn
ejωn

∣
∣
∣
∣

π

0

=
ejπn − 1

2πjn

=
(−1)n − 1

2πjn
=







0, n even, n 6= 0

j
1

πn
, n odd

For n = 0, going back to the original integral gives

h(0) =
1

2π

∫ π

0

ejω·0dω =
1

2
.

Thus, the real part of h(n) is δ(n)/2, and the imaginary
part is 1/(πn) for odd n and zero otherwise (as a result
of bandlimiting). There is no aliasing.
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Ideal Bandlimited Impulse Response, Cont.

We defined the bandlimited single-side-band filter by
direct calculation:

h(n) = IDTFTn(u)
∆
=

1

2π

∫ π

0

ejωndω

=







1/2, n = 0

0, n even

j

πn
, n odd

• An impulsive real-part is expected (passing the input
real-part unchanged, only scaled)

• An imaginary part j/(πn) would be the result of
sampling j/(πt) with fs = 1, but . . .

• The zeros for even n are surprising, but that’s the
spectrum of a square pulse train
(both bandlimiting and periodic extension)

We also need a transition band:

• We’ll “draw” an estimate in the frequency domain,
take a (large) inverse dft, and window that

• The transition width will be at least the main-lobe
width of the window transform
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Kaiser Window

Kaiser window in causal, linear-phase form:

w = kaiser(M,beta); % M=length=257, beta=8

Zero-pad by a factor of 8 and convert to zero-centered
form (N = FFT size = 2048):

wzp = [w((M+1)/2:M),zeros(1,N-M),w(1:(M-1)/2)];

Kaiser window transform:

W = fft(wzp);

Note: W = fft(w,N) would set up w in causal form in W

instead of zero-phase form
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Kaiser Window Transform (Real, Linear Scale)
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Kaiser Window Transform (Decibel Scale)
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Kaiser window transform, close-up on main lobe
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Oversimplified Window Method

Sample ideal Hilbert-transform kernel h(t) = 1/πt to get

ĥi(n)
∆
=

1

πnT
(Sampled Hilbert transform kernel)

ĥw(n)
∆
= w(n)ĥi(n) (Windowed ideal impulse response)

Ĥw(ω) = (W ∗ Ĥ)(n) (Smoothed ideal frequency response)

Design Parameters:

fs = 22050; % sampling rate (Hz)

T = 1/fs; % sampling period (sec)

M = 257; % FIR filter length = window length

N = 8*(M-1); % for interpolated spectral displays

beta = 8; % beta for Kaiser window

Filter Design:

% Choose our sampled time axis to avoid time zero

% to avoid a division by zero in hr below:

n = [-N/2+0.5:N/2-0.5]; % Time axis (avoid t=0)

hi = T ./ (pi*n*T); % Sampled Hilbert kernel

hr = sin(pi*n) ./ (pi*n); % 1/2 sample delay filter

h = (hr + j*hi)/2; % Sampled ideal final filter

plot(f,fftshift(max(-100,20*log10(abs(fft(h)))))); grid;

...
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FFT of Truncated(2048) Ideal Impulse Response
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h = [h(N/2+1:N),h(1:N/2)]; % zero-centered form (almost)

hw = wzp .* h; % Apply window to ideal impulse response

Hw = fft(hw); % Frequency response we really get

% Compute total stopband attenuation:

ierr = norm(Hw(N/2+2:N))/norm(Hw)

= 0.0378 = 3.8 percent

For spectral displays, rotate buffer so negative frequencies
are on the left and dc is at k = N/2:
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Hwp = [Hw(N/2+2:N), Hw(1:N/2+1)]; % Neg. freqs on left

Hwpn = abs(Hwp); Hwpn = Hwpn/max(Hwpn);

plot(f,20*log10(Hwpn)); grid;

...

FIR Frequency Response by the Window Method
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Zoom in on low-frequency transition band
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• Poorly positioned transition region from positive to
negative frequencies.

• Need to first bandpass-filter the ideal impulse
response.

• High-frequency transition identical, by symmetry
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Window Method applied to Bandlimited Ideal
Impulse Response

Further Design Parameters:

f1 = 530; % lower passband limit (Hz)

N = 2^(nextpow2(8*fs/f1)) % FFT size from xition width

if N<8*M, N = 8*(M-1); end; % spectral interpolation

Bandlimited “Ideal” Hilbert transformer frequency
response (FR), including transition bands ∆ matched to
FFT size N such that N ≫ fs/∆:

H = [ ([0:k1-2]/(k1-1)).^8,ones(1,k2-k1+1), ...

([k1-2:-1:0]/(k1-1)).^8,zeros(1,N/2-1)];

Hp = [H(N/2+2:N), H(1:N/2+1)]; // pos. freqs only

f = [-0.5 + 1/N : 1/N : 0.5]; normalized freq axis

plot(f,Hp); grid; ...

• Linear transition to 8th power ⇒ 6× 8 = 48
dB/octave roll-off to dc instead of only 6 dB/octave
(transition looks like 8 poles at dc instead of 1)

• Our time-domain window will smooth the abrupt
corner at the passband edge
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Desired Frequency Response
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Desired Impulse Response

h = ifft(H); % zero-centered form

% rough estimate of time-aliasing error:

aerr = norm(h(N/2-N/32:N/2+N/32))/norm(h)

aerr =

4.8300e-04

% for plots, prefer negative times on the left:

hp = [h(N/2+2:N), h(1:N/2+1)];
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Real Part of Desired Impulse Response
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Imaginary Part of Desired Impulse Response
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Apply window to ideal impulse response:

hw = wzp .* h; % Final FIR coefficients

Hw = fft(hw); % Frequency response we’ll see

Total stopband energy:

ierr = norm(Hw(N/2+2:N))/norm(Hw)

disp(sprintf([’Stop-band energy is %g percent of’,...

total spectral energy’], 100*ierr));
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Final FIR Filter Frequency Response
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Zoom-in on Transition Region of Final Frequency
Response
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• Transition band better positioned

• ≈ 100 dB stob-band attenuation
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Remez Multiple Exchange Method

Let’s now try the Remez multiple exchange algorithm
(“Parks-McClellan algorithm”) for optimal Chebyshev
(equiripple) FIR filter design, and compare it to our
window-method design.

Step 1: Design an optimal lowpass filter of the desired
width (takes quite a while):

M = 257; % FIR filter length

fs = 22050; % sampling rate (Hz)

fn = fs/2; % Nyquist limit (Hz)

f1 = 530; % lower passband limit (Hz)

f2 = fn - f1; % upper passpand limit (see text, p. 136)

hrm = firpm(M-1, [0,(f2-fs/4)/fn,0.5,1], ...

[1,1,0,0], [1,10]);

• The weighting [1,P] says make the passband ripple P
times that of stopband

• For steady-state audio spectra, passband ripple ≈ 0.1
dB is good

• However, consider an FM signal in the passband
⇒ passband ripple becomes AM sidebands

• Here, we allow the passband ripple to be 10 times
the stopband ripple, as a compromise
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Step 2: Modulate the impulse response to make it a
single-sideband filter. I.e., right-shift by π/2 in the
frequency domain (rotate the frequency response
counterclockwise along the unit circle by 90 degrees):

hr = hrm .* j .^ [0:M-1];

Optimal Chebyshev FIR(257) Frequency
Response
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Zoom-In on Transition Band
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Passband Ripple
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Initial Impulse Response
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Log-Magnitude of Initial Impulse Response
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Summary of Trade-Offs

Window-method filter:

(+) Filter length can be thousands of taps

(−) Stopband “droops” (rolls off) — not L∞ optimal

(−) Passband edge tuned slightly too low

Optimal Remez-Exchange filter:

(+) Stopband is ideal, equiripple

(+) Transition region close to half that of the window
method

(+) Pass-band is ideal, equiripple

(+) Time-domain impulses from passband ripple are small

(−) Design time orders of magnitude larger than that for
window method

(−) Fails to converge for filters much longer than 256 taps
(Need to increase working precision to get longer
filters)
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Matlab hilbert() function

The Matlab Hilbert function returns an analytic signal
given its real part.

Nh = M-2; % This looks best

delta = [1,zeros(1,Nh)]; % zero-centered impulse

hh = hilbert(delta); % zeros negative-freq FFT bins

Hh = fft(hh); % FIR frequency response

−0.5 −0.4 −0.3 −0.2 −0.1 0.1 0.2 0.3 0.4 0.5
−350

−300

−250

−200

−150

−100

−50

Frequency Response of Length 256 hilbert() using Matlab

Normalized Frequency (cycles/sample)

G
a

in
 (

d
B

)

0

0

Looks pretty good, but let’s zero-pad the impulse
response to interpolate the frequency response:
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hhzp = [hh(Lh/2+1:Lh), zeros(1,N-Lh), hh(1:Lh/2)];

Hhzp = fft(hhzp); % Frequency response
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Problems:

• Transition bandwidth only 2 bins wide

• Massive time aliasing

• Only correct for periodic signals with period exactly
equal to filter length Nh. In this case, time aliasing is
equivalent to overlap-add from adjacent periods.

In general, any real signal given to hilbert() must be
interpreted as precisely one period of a periodic signal.
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Optimal FIR Digital Filter Design

• Optimal Chebyshev FIR Design

• Lp Norm Minimization

• Least squares problems

• Min-Max problems

• Least Squares Optimization

• PseudoInverse

• FIR Filter Design

• Linear Phase

• Complex Filter Design

• Other Applications
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Books pertinent to Digital Filter Design

• Parks and Burrus (1987)

• Rabiner and Gold (1975)

• Oppenheim and Schafer (1975, 1999)

• Strum and Kirk (1988)

• Steiglitz (1996)

• Boyd and Vandenberghe (2004)

See the text bibliography for full citations.
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Optimal Chebyshev Filters

• Minimize the maximum of the weighted error

• Stopband and passband errors are equiripple

• Remez Multiple Exchange
(Parks-McClellan algorithm)

• Available in Octave as remez and the Matlab SP
Tool Box as firpm(), cfirpm()

[formerly remez(), cremez()]
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Recall Example Chebyshev FIR Lowpass
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Recall Chebyshev Window and Transform
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Problems with Remez Exchange

• Convergence unlikely for FIR filters longer than a few
hundred taps or so

• Fundamentally real polynomial approximation on the
unit circle

⇒ Applies only to linear phase filters

• Sometimes need optimal weighted complex
approximation
e.g., minimum phase FIR filter design
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Filter Design using Lp Norms

In terms of Lp norm minimization, the filter design
problem becomes:

min
h
‖W (ωk) [H(ωk)−D(ωk)]‖p

Where

• ‖·‖p denotes the Lp norm (defined below)

• ωk = discrete frequency (possibly non-uniform)

• H(ωk) = frequency response of our filter

• D(ωk) = desired (complex) frequency response

• W (ωk) = (optional) weighting function

This formulation applies to both FIR and IIR filters
replacing h by the direct-form coefficients [B,A].
(With A = 1, B = h).

We’ll look at some specific cases below
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Lp Norms

The Lp norm of an N -dimensional vector x is defined as

‖x ‖p
∆
=

(
N−1∑

i=0

|xi|
p

)1
p
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Special cases

• L1 norm

‖x ‖1
∆
=

N−1∑

i=0

|xi|

• Sum of the absolute values of the elements

• “City block” distance

• L2 norm

‖ x ‖2
∆
=

√
√
√
√

N−1∑

i=0

|xi|2

• “Euclidean” distance

• Minimized by “Least Squares” techniques

• L∞-norm

‖ x ‖∞
∆
= lim

p→∞

(
N−1∑

i=0

|xi|
p

)1
p

In the limit as p→∞, the Lp norm of x is
dominated by the maximum element of x.
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Least-Squares Linear-Phase FIR Filter Design

Let the FIR filter length be L + 1 samples, with L even,
and suppose we’ll initially design it to be centered about
the time origin (“zero-phase”). Then the frequency
response is given on our frequency grid ωk by

H(ωk) =

L/2
∑

n=−L/2

hne
−jωkn, k = 0, 1, 2, . . . , N−1, N ≫ L.

Enforcing even symmetry in the impulse response, i.e.,
hn = h−n, gives a zero-phase FIR filter which we can
later right-shift L/2 samples to make a causal, linear
phase filter. In this case, the frequency response reduces
to a sum of cosines:

H(ωk) = h0 + 2

L/2
∑

n=1

hn cos(ωkn), k = 0, 1, 2, . . . , N − 1,

or in matrix form:







H(ω0)

H(ω1)
...

H(ωN−1)







=








1 2 cos(ω0) . . . 2 cos[ω0(L/2)]

1 2 cos(ω1) . . . 2 cos[ω1(L/2)]
...

1 2 cos(ωN−1) . . . 2 cos[ωN−1(L/2)]








︸ ︷︷ ︸
A








h0

h1
...

hL/2








︸ ︷︷ ︸
x

Note that Remez exchange algorithms are also based on
this formulation internally, but now L≪ N .
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Matrix Formulation: Optimal L2 Design, Cont’d

In matrix notation, our filter design problem can be stated

min
x
‖Ax− b‖22

where, for zero-phase filters,

A
∆
=







1 2 cos(ω0) . . . 2 cos [ω0(L/2)]
1 2 cos(ω1) . . . 2 cos [ω1(L/2)]
...
1 2 cos(ωN−1) . . . 2 cos [ωN−1(L/2)]







x
∆
= h

and b = [D(ωk)] is the desired frequency response at the
specified frequencies.

• The chosen grid frequencies ωk provide

• effective weighting (denser points ⇒ more weight)

• transition bands (gaps in the grid)

• Usually there is an explicit weighting allowed, so that
‖W (ωk) [H(ωk)−D(ωk)]‖

2
2 is minimized

• The function firls in Octave and the Matlab Signal
Processing Tool Box implements frequency-domain
weighted-least-squares FIR filter design
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Least Squares Optimization

x̂
∆
= argmin

x
‖Ax− b ‖2 = argmin

x
‖Ax− b ‖22

Hence we can minimize

‖Ax− b ‖22 = (Ax− b)T (Ax− b)

Expanding this, we have:

(Ax− b)T (Ax− b) = (bT − xTAT )(Ax− b)

This is quadratic in x, hence it has a global minimum
which we can find by taking the derivative, setting it to
zero, and solving for x. Doing this yields:

ATAx− ATb = 0

These are the famous normal equations whose solution is
given by:

x̂ =
[
(ATA)−1AT

]
b

The matrix
A†

∆
= (ATA)−1AT

is known as the pseudo-inverse of the matrix A.
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Geometrical Interpretation of Least Squares

Typically, L≪ N , i.e., the number of frequency
constraints is much greater than the number of design
variables (filter taps). In these cases, we have an
overdetermined system of equations (more equations
than unknowns). Therefore, we cannot generally satisfy
all the equations, and we are left with minimizing some
error criterion to find the “optimal compromise” solution.

In the case of least-squares approximation, we are
minimizing the Euclidean distance, which suggests the
following geometrical interpretation:

Ax̂

column-space of A

b = Ax̂ + e

Minimizex‖e‖2 = ‖b− Ax‖2
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Ax̂

column-space of A

This diagram suggests that the error vector b− Ax̂ is
orthogonal to the column space of the matrix A, hence it
must be orthogonal to each column in A.

AT (b− Ax̂) = 0⇒ ATAx̂ = ATb

This is how the orthogonality principle can be used to
derive the fact that the best least squares solution is
given by

x̂ = (ATA)−1ATb = A†b

Note that the pseudo-inverse A† projects the vector b
onto the column space of A.

In Matlab:

• x = A \ b

• x = pinv(A) * b
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Complex FIR Filter Design

In linear-phase filter design, we assumed symmetry of our
filter coefficients [h(n) = h(−n)] ⇒

• The filter frequency response became a sum of
cosines (“zero phase”)

• The matrix A was real

• The desired magnitude response b was real

• The final zero-phase filter x̂ could be right-shifted
L/2 samples to get a corresponding causal
linear-phase FIR filter

Now we would like to specify a complex frequency
response. This means that:

• b is complex

• A is complex

• We still want x (our filter coefficients) to be real

If we try to use ’\’ or pinv in Matlab, we will generally
get a complex result for x̂
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Summarizing our problem:

min
x
‖Ax− b ‖2

where, A ∈ C
NxM , b ∈ C

Nx1, and x ∈ R
Mx1

Hence we have,

min
x
‖[R(A) + jI(A)] x− [R(b) + jI(b)]‖22

which can be written as:

min
x
‖R(A)x−R(b) + j [I(A)x + I(b)] ‖22

or

min
x

∥
∥
∥
∥

[
R(A)
I(A)

]

x−

[
R(b)
I(b)

]∥
∥
∥
∥

2

2

which is written in terms of only real variables.

Hence, we can use the standard least squares solvers in
Matlab and end up with a real solution.

Related paper

“Design of Fractional Delay Filters Using Convex
Optimization” (Mohonk-97, Music 421 handout):
http://ccrma.stanford.edu/~jos/eps/mohonk97.ps.gz
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Optimal FIR Filters — Arbitrary Magnitude and
Phase Specificiations

cfirpm (Matlab Signal Processing Toolbox) performs
complex L∞ FIR filter design:

• Convergence theoretically guaranteed for arbitrary
magnitude and phase specifications versus frequency.

• Reduces to Parks-McClellan algorithm (Remez second
algorithm) as a special case.

• Written by Karam and McClellan. See “Design of
Optimal Digital FIR Filters with Arbitrary Magnitude
and Phase Responses,” by Lina J. Karam and James
H. McClellan, ISCAS-96. The paper may be
downloaded at

http://www.eas.asu.edu/~karam/papers/iscas96 km.html
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MATLAB FIR Filter Design Functions

Reference:
https://www.mathworks.com/help/signal/ug/fir-filter-design.html

FIR Filter Design

Method Description Functions

Window

Apply chosen window to
inverse Fourier transform of
heavily interpolated desired
frequency response

fir1, fir2,
kaiserord

Least-
Squares or
Chebyshev
Bandpass
Design

Chebyshev (equal-ripple) or
least-squares design on
frequency bands separated
by transition bands

firls, firpm,
firpmord

Constrained
Least
Squares

Minimize sum of squared
magnitude errors over entire
frequency range subject to
maximum error constraints

fircls,
fircls1

Complex
Chebyshev

Approximate any complex
frequency response,
including nonlinear phase
and complex filters

cfirpm

Raised
Cosine

Lowpass response with
smooth, sinusoidal transition

rcosdesign
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MATLAB FIR Filter Design Functions, Continued

fir1: Window-based finite impulse response filter design.

b = fir1(n,Wn) returns row vector b containing the
n+1 coefficients of an order n lowpass FIR filter.

Algorithms: The window method of FIR filter design [1].

fir2: Frequency sampling-based finite impulse response
filter design.

b = fir2(n,f,m) returns row vector b containing the
n+1 coefficients of an order n FIR filter. The
frequency-magnitude characteristics of this filter match
those given by vectors f(frequency) and m(corresponding
magnitude). References:[2, 3]

firls: Least square linear-phase FIR filter design.

b = firls(n,f,a) returns row vector b containing the
n+1 coefficients of the order n FIR filter whose
frequency-amplitude characteristics approximately match
those given by vectors f and a. The output filter
coefficients, or “taps,” in b obey the symmetry relation.
References: [4, 5]
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fircls: Constrained least square, FIR multiband filter
design.

b = fircls(n,f,amp,up,lo) generates a length n+1
linear phase FIR filter b. The frequency-magnitude
characteristics of this filter match those given by vectors
f(frequency) and amp(amplitude).

Algorithms: uses an iterative least-squares algorithm to
obtain an equiripple response. The algorithm is a multiple
exchange algorithm that uses Lagrange multipliers and
Kuhn-Tucker conditions on each iteration[6].

fircls1: Constrained least square, lowpass and
highpass, linear phase, FIR filter design.

b = fircls1(n,wo,dp,ds) generates a lowpass FIR
filter b, where n+1 is the filter length, wo is the
normalized cutoff frequency in the range between 0 and 1
(where 1 corresponds to the Nyquist frequency), dp is the
maximum passband deviation from 1 (passband ripple),
and ds is the maximum stopband deviation from 0
(stopband ripple).

Algorithms: uses an iterative least-squares algorithm to
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obtain an equiripple response. The algorithm is a multiple
exchange algorithm that uses Lagrange multipliers and
Kuhn-Tucker conditions on each iteration[6].

firpm: Parks-McClellan optimal FIR filter design.

b = firpm(n,f,a) returns row vector b containing the
n+1 coefficients of the order n FIR filter whose
frequency-amplitude characteristics match those given by
vectors f and a. The filters are optimal in the sense that
the maximum error between the desired frequency
response and the actual frequency response is minimized.
Filters designed this way exhibit an equiripple behavior in
their frequency responses. Reference: [7]

cfirpm: Complex and nonlinear-phase equiripple FIR
filter design.

b = cfirpm(n,f,@fresp) returns a length n+1 FIR
filter with the best approximation to the desired
frequency response as returned by function fresp, f is a
vector of frequency band edge pairs.

Algorithms: An extended version of the Remez exchange
method is implemented for the complex case[8].
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