Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Ideal Bandlimited Impulse Response

Since we are working with sampled data, the ideal single-side-band filter impulse response is

$\displaystyle h(n) = \hbox{\sc IDTFT}_n(u) \isdef \frac{1}{2\pi} \int_{-\pi}^{\pi}u(\omega)e^{j\omega n} d\omega
$

where $ u(\omega)$ is a unit step function in the frequency domain:

$\displaystyle u(\omega) \isdef \left\{\begin{array}{ll}
1, & \omega\ge 0 \\ [5pt]
0, & \omega<0 \\
\end{array} \right.
$

We can evaluate the IDTFT directly as follows:

\begin{eqnarray*}
h(n) &=& \frac{1}{2\pi} \int_{0}^{\pi}e^{j\omega n} d\omega
= \left. \frac{1}{2\pi j n} e^{j\omega n} \right\vert _0^\pi
= \frac{e^{j\pi n}-1}{2\pi j n}\\ [10pt]
&=& \frac{(-1)^n-1}{2\pi j n}
= \left\{\begin{array}{ll}
0, & \hbox{$n$\ even}, n\neq 0 \\ [5pt]
j\dfrac{1}{\pi n}, & \hbox{$n$\ odd} \\
\end{array} \right.
\end{eqnarray*}

For $ n=0$ , going back to the original integral gives

$\displaystyle h(0)=\frac{1}{2\pi} \int_{0}^{\pi}e^{j\omega \cdot 0 } d\omega = \frac{1}{2}.
$

Thus, the real part of $ h(n)$ is $ \delta(n)/2$ , and the imaginary part is $ 1/(\pi n)$ for odd $ n$ and zero otherwise (as a result of bandlimiting). There is no aliasing.


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[Comment on this page via email]

``The Window Method for FIR Digital Filter Design}'', by Julius O. Smith III, (From Lecture Overheads, Music 421).
Copyright © 2020-06-27 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]