Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Complex FIR Filter Design

In linear-phase filter design, we assumed symmetry of our filter coefficients [ $ h(n) = h(-n)$ ] $ \Rightarrow$

Now we would like to specify a complex frequency response. This means that:

If we try to use ' $ \backslash$ ' or pinv in Matlab, we will generally get a complex result for $ \hat{x}$

Summarizing our problem:

$\displaystyle \min_x \left\Vert\,Ax-b\,\right\Vert _2
$

where, $ A \in \mathbb{C}^{NxM}$ , $ b \in \mathbb{C}^{Nx1}$ , and $ x \in \mathbb{R}^{Mx1} $

Hence we have,

$\displaystyle \min_x \left\Vert \left[{\cal{R}}(A)+j{\cal{I}}(A)\right]x
- \left[ {\cal{R}}(b)+j{\cal{I}}(b) \right] \right\Vert _2^2
$

which can be written as:

$\displaystyle \min_x \left\Vert\, {\cal{R}}(A)x- {\cal{R}}(b)
+j \left[ {\cal{I}}(A)x+{\cal{I}}(b) \right] \,\right\Vert _2^2
$

or

$\displaystyle \min_x \left\Vert \left[ \begin{array}{c}
{\cal{R}}(A) \\ {\cal{I}}(A) \end{array} \right] x
- \left[ \begin{array}{c}
{\cal{R}}(b) \\ {\cal{I}}(b) \end{array}\right]
\right\Vert _2^2
$

which is written in terms of only real variables.

Hence, we can use the standard least squares solvers in Matlab and end up with a real solution.

Related paper

``Design of Fractional Delay Filters Using Convex Optimization'' (Mohonk-97, Music 421 handout):

http://ccrma.stanford.edu/~jos/eps/mohonk97.ps.gz


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[Comment on this page via email]

``The Window Method for FIR Digital Filter Design}'', by Julius O. Smith III, (From Lecture Overheads, Music 421).
Copyright © 2020-06-27 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]