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Example One-Dimensional Waveguides

e Any elastic medium displaced along 1D
e Air column of a clarinet or organ pipe

— Air-pressure deviation p < string displacement y

— Longitudinal volume velocity u « transverse
string velocity v

e Vibrating strings

— Really need at least three coupled 1D waveguides:

+ Horizontally polarized transverse waves

* Vertical polarized transverse waves

* Longitudinal waves

(Typically 1 or 2 WG per string used in practice)
— Bowed strings also require torsional waves

(Typical: one waveguide per string [plane of the
bow])

— Piano requires up to three coupled strings per key
+ Two-stage decay
* Aftersound

(Typical: 1 or 2 waveguides per string)

Let's first review the finite difference approximation
applied to the ideal string (for comparison purposes):
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Ideal Vibrating String

String Tension
- K-

y(tx)
€= Mass/Length

0, Position X

Wave Equation

K 2 string tension Yy 2 y(t, x)
¢ £ linear mass density 7 2 sy(t, )
y 2 string displacement Yy 2 %y(t,x)

Newton’s second law

[Force = Mass x Acceleration]

Assumptions

e Lossless

e Linear

e Flexible (no “Stiffness”)
e Slope ¢/(t,z) < 1

Finite Difference Approximation (FDA)

- y(t, o) —y(t —T,x)

)~

y(?'x) T

and (t,) — ylt,z — X)
/t zy , L) — Yy, T —
y(7x> X

e T' = temporal sampling interval
e X = spatial sampling interval
e Exact in limit as sampling intervals — zero
e Half a sample delay at each frequency.
Fix: g(t,x) = [yt +T,z) —y(t —T,x)]/(2T)
Zero-phase second-order difference:
oyt +T ) —2y(t,x) +y(t —T,x)

U(t,l’)w T2
ylt, o+ X)—2y(t,z) +y(t,z — X
it 0) = W2+ )= 2l 2 4yltn = 0

o All odd-order derivative approximations suffer a
half-sample delay error

e All even order cases can be compensated as above


http://ccrma.stanford.edu/~jos
http://ccrma.stanford.edu/
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FDA of 1D Wave Equation

Substituting finite difference approximation (FDA) into
the wave equation Ky’ = €jj gives

y(t,x+ X) —2y(t,z) + y(t,r — X)
X2
(t+T x) = 2y(t,x)+ylt —T,x)
T2

K

= Time Update:
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KT
7 Wtz +X) - 2y(t

y(t+T,2) = cx) +y(t, e — X))

+2y(t,x) —y(t — T, x)

Let ¢ 2 v/ K /e (speed of sound along the string).
In practice, we typically normalize such that

e '=1=t=nT=n

e X=cT=1=x2z=mX =m, and

‘y(n—&—l,m) zy(n,m+1)+y(n,m—1)—y(n—l,m)‘

e Recursive difference equation in two variables
(time and space)

— Time-varying example:

ay(t7 .Z') _ tZay(t7 .Z')
ot ox

e Time-update recursion for time n + 1 requires all
values of string displacement (i.e., all m), for the two
preceding time steps (times n and n — 1)

e Recursion typically started by assuming zero past
displacement: y(n,m) =0,n=—1,0,Vm.

e Higher order wave equations yield more terms of the
form y(n — I, m — k) < frequency-dependent losses
and/or dispersion characteristics are introduced into
the FDA:

e Linear differential equations with constant coefficients
give rise to some linear, time-invariant discrete-time
system via the FDA

— Linear, time-invariant, “filtered waveguide” case:

[o¢]

Zké‘ytx Zﬁayt:z

k=0 =0

— More general Iinear time-invariant case

(€N vy 1
k=0 [=0 ot 6 m=0 n=0
— Nonlinear example:
dy(t,x) _ (dy(t,x)\”
o ox
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Traveling-Wave Solution

)

aman
Z Z 5777 n atmaxn

One-dimensional lossless wave equation:

Ky// — Ey

Plug in traveling wave to the right:

y(t,z) = yolt —x/c)

1.

= yJ(t,z) = fgy(t,x)
1.

y//(t7I) - gy“x)

e Since ¢ 2 v/ K /€, the wave equation is satisfied for
any shape traveling to the right at speed ¢ (but
remember slope < 1)

e Similarly, any left-going traveling wave at speed c,
yi(t + x/c), statisfies the wave equation



e General solution to lossless, 1D, second-order wave Laplace-Domain Analysis
equation:

y(t,x) = yelt — /) + ylt + z/c) e ¢ is an eigenfunction under differentiation
e y;(-) and y,(-) are arbitrary twice-differentiable e Plug it in:
functions (slope < 1) y(t,z) = e
e Important point: Function of two variables y(t, ) o By differentiation theorem

is replaced by two functions of a single (time) variable

= reduced complexity. Yy = sy y = vy

- . y — 82y J/A— U2y
e Published by d'Alembert in 1747
e Wave equation becomes
Ko’y = es’y
s K,
= 5 = — =
v €,
= v = +-
c

Thus
y(t, IE) _ es(tiw/o)

is a solution for all s.

Interpretation: left- and right-going exponentially
enveloped complex sinusoids

General eigensolution: Infinitely long string plucked simultaneously at
y(t,x) = e”’“ﬂt""/‘?)7 s arbitrary, complex three points marked ‘p
By superposition,

y(t’ I') - Z A+(5i>€‘gi(tilr/c) + A” (Si)es,(t%r/c) String Shape at
2

is also a solution for all AT (s;) and A~ (s;).

Traveling Wave
) Components
atimet,

Alternate derivation of D’Alembert’s solution:
e Initial displacement = sum of two identical triangular

T . . A -
e Specialize general eigensolution to s = jw pulses

® Extend summatllon to an |nteg.ra| over w e At time ¢, traveling waves centers are separated by
= Inverse Fourier transform gives ¢ty meters

x x
yit,z) =y, (t - ;) +uy (t + ;) e String is not moving where the traveling waves

overlap at same slope.
where y,(-) and y;(-) are arbitrary continuous P P

functions



Sampled Traveling Waves in a String

For discrete-time simulation, we must sample the
traveling waves

e Sampling interval 2 T seconds
e Sampling rate 2 fsHz=1/T

e Spatial sampling rate 2 X m/s 2T
= systolic grid

For a vibrating string with length . and fundamental
frequency fo,

C=f0~2L (

so that

periods meters  meters
sec  period sec

X =cT = (f2L)/ f, = L{fo/(fs/2)]

Thus, the number of spatial samples along the string is

L/X = (fs/2)/fo

Number of spatial samples = Number of string harmonics

Examples (continued):
e Sound propagation in air:

— Speed of sound ¢ = 331 meters per second

— X =331/44100 = 7.5 mm

— Spatial sampling rate = v, = 1/X =133
samples/m

— Sound speed in air is comparable to that of
transverse waves on a guitar string (faster than
some strings, slower than others)

— Sound travels much faster in most solids than in air

— Longitudinal waves in strings travel faster than
transverse waves

Examples:

e Spatial sampling interval for (1/2) CD-quality digital
model of Les Paul electric guitar (strings ~ 26 inches
long)

— X = Lfy/(f,/2) = L82.4/22050 ~ 2.5 mm for
low E string

— X ~ 10 mm for high E string (two octaves higher
and the same length)

— Low E string: (fs/2)/ fo = 22050/82.4 = 268
harmonics (spatial samples)

— High E string: 67 harmonics (spatial samples)

e Number of harmonics = number of oscillators
required in additive synthesis

e Number of harmonics = number of two-pole filters
required in subtractive, modal, or source-filter
decomposition synthesis

Sampled Traveling Waves in any Digital
Waveguide

r — Ty, = mX
t —t, =nTl

?J(tm Zm) = yr(tn - xm/c) + yl<tn + Im/c>
= y.(nT —mX/c)+y(nT +mX/c)
= yr[ln=m)T] +yi[(n+m)T]
= y'(n—m)+y (n+m)
where we defined

y*(n) £ y.(nT) y~(n) £ y(nT)

e “+" superscript = right-going

e “—" superscript = left-going

ey, [(n—m)T] =y"(n—m)= output of m-sample
delay line with input y*(n)

ey [(n+m)T) 2y (n+m)= input to an m-sample
delay line whose output is y~(n)
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Lossless digital waveguide with observation
points at z =0 and = = 3X = 3T

”.y(n) - y (n-1) ’7‘ y(n-2) ’7‘ Y(n-3).”
[
y (nT,0)
B .y'(n) m y(n+1) ’7‘ y(n+2)
[ [
(x=0) (x=cT) (x=2cT) (x=3cT)
e Recall:
t—x/c t+ax/c
ta) =y | —— ) +y (——
y(t, z) y(T)y<T>
1
y(nT,mX) = y"(n—m)+y (n+m)

e Position x,, = mX = mcT is eliminated from the
simulation

e Position x,, remains laid out from left to right

e Left- and right-going traveling waves must be
summed to produce a physical output

Y(tn, T) = y+(n —m)+y (n+m)
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Relation of Sampled D’Alembert

Traveling Waves to the Finite Difference

Approximation

Recall FDA result [based on @(n) = x(n) — z(n — 1)]:

yin+1,m)=yn,m+1)+yn,m—1)—y(n—1,m)

Traveling-wave decomposition (exact in lossless case at
sampling instants):

y(n,m)=y"(n—m)+y (n+m)

Substituting into FDA gives

yin+1,m) = yn,m+1)+yn,m—1)—yn—1,m)

=y n-m-1)+y (n+m+1)
+y'(n—m+1)+y (n+m-—1)
—y*n—m—-1)—y (n+m—1)
y (n+m+1)+yt(n—m+1)
y(n+1)—m|+y [(n+1)+m]
y(n+1,m)

el

e FDA recursion is also exact in the lossless case (1)

e Recall that FDA introduced artificial damping in
mass-spring systems
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e Similar to ladder and lattice digital filters

Important point: Discrete time simulation is exact at
the sampling instants, to within the numerical precision
of the samples themselves.

To avoid aliasing associated with sampling,

e Require all initial waveshapes be bandlimited to
(7fs/27 fa/2>

e Require all external driving signals be similarly
bandlimited

e Avoid nonlinearities or keep them “weak”
e Avoid time variation or keep it slow

e Use plenty of lowpass filtering with rapid
high-frequency roll-off in severely nonlinear and/or
time-varying cases

e Prefer “feed-forward” over “feed-back” around
nonlinearities when possible

e The last identity above can be rewritten as
y(n+Lm) 2 y*[(n+1) —m] 4y [(n+1)+m]
=y'n—(m-1]+y [n+(m+1)

e Displacement at time n + 1 and position m is the
superposition of left- and right-going components
from positions m — 1 and m + 1 at time n

e The physical wave variable can be computed for the
next time step as the sum of incoming traveling wave
components from the left and right

e Lossless nature of the computation is clear

20



The Lossy 1D Wave Equation

String Tension
Yy (tx) o K=

£ =MasyLength

0, Position X

The ideal vibrating string.
Sources of loss in a vibrating string:

1. Yielding terminations
2. Drag due to air viscosity

3. Internal bending friction

Simplest case: Add a term proportional to velocity:

Ko — eil 4+
Y yml%
More generally,
N, OMy(ta)
Ky =ey+ Z /L,,ZW
1 odd

where 1, may be determined indirectly by measuring
linear damping versus frequency

21

Lossy Digital Waveguide

e Order oo distributed system reduced to finite order

e Loss factor g = e #1/2¢ summarizes distributed loss in
one sample of propagation

e Discrete-time simulation exact at sampling points
e Initial conditions and excitations must be bandlimited

e Bandlimited interpolation reconstructs continuous
case
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Solution to Lossy 1D Wave Equation

y(t, z) = e W29ley (£ — x/fc) + eIy, (t+ x/c)
Assumptions:

e Small displacements (v’ < 1)
e Small losses (i < ew)

A o
e c = \/K /e = as before (wave velocity in lossless
case)

Components decay exponentially in direction of travel

Sampling with t = nT', v = mX, and X = T gives

-m, +

y(tm -%'nz) =9 Y (n - m) + gmy—<n + TTL)

A
where g = e #1/%
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Loss Consolidation

e Loss terms are simply constant gains g < 1
e Linear, time-invariant elements commute
e Applicable to undriven and unobserved string sections

e Simulation becomes more accurate at the outputs
(fewer round-off errors)

e Number of multiplies greatly reduced in practice
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Frequency-Dependent Losses

e Losses in nature tend to increase with frequency

— Air absorption
— Internal friction

e Simplest string wave equation giving higher damping
at high frequencies
3
Ky" = €ij+ g + +/%%
néw
— Used in Chaigne-Askenfelt piano string PDE

— Damping asymptotically proportional to w?

e Waves propagate with frequency-dependent
attenuation (zero-phase filtering)

e Loss consolidation remains valid (by commutativity)
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Effects of Stiffness

The Dispersive One-Dimensional Wave
Equation

e Phase velocity increases with frequency

2
A Kw
c(w) = ¢ <1 + )
2K}

where ¢y = /K /e = zero-stiffness phase velocity
e Note ideal-string (LF) and ideal-bar (HF) limits

e Traveling-wave components see a
frequency-dependent sound speed

e High-frequency components “run out ahead” of
low-frequency components (“HF precursors™)

e Traveling waves “disperse” as they travel
(“dispersive transmission line")

e String overtones are “stretched” and “inharmonic”

e Higher overtones are progressively sharper
(Period(w) = 2 x Length / ¢(w))

e Piano strings are audibly stiff

Reference: L. Cremer: Physics of the Violin
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Stiffness introduces a restoring force proportional to the
fourth spatial derivative:

"

i K /N
€y Yy Ry
néw
where

Qma’
4

o K= (moment constant)
e ¢ = string radius

e () = Young's modulus (stress/strain)
(spring constant for solids)

e Stiffness is a linear phenomenon
— Imagine a “bundle” or “cable” of ideal string fibers
— Stiffness is due to the longitudinal springiness
Limiting cases
e Reverts to ideal flexible string at very low frequencies
(Ky// >> K,/y////)
e Becomes ideal bar at very high frequencies

(Ky// << K/y///l)
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Digital Simulation of Stiff Strings

o Allpass filters implement a frequency-dependent delay
e For stiff strings, we must generalize X = ¢T to
X =cw)T = Tw)=X/cw) = cyTy/c(w)
where Tj, = T'(0) = zero-stiffness sampling interval

e Thus, replace unit delay 2! by

27 gra/ee) 2 H,(z) (frequency-dependent delay)

e Each delay element becomes an allpass filter
e In general, H,(z) is irrational

e We approximate H,(z) in practice using some
finite-order fractional delay digital filter

(x=0) (x=c(W)T) (x=2c(w)T) (x=3c(w)T)
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General Allpass Filters

e General, order L, allpass filter:
,LA(Zil)
A(z)
ay, + aL—lz_l + oo+ alz—(L—l) + Z_L
1+ CL1271 + a2z*2 + -4+ CLszL

[

H,(z)

e General order L, monic, minimum-phase polynomial:

A(z) N +az M tagz 4 +agz

where A(z;) =0 = |z]| < 1 (roots inside unit circle)
e Numerator polynomial = reverse of denominator

e First-order case:
A alz’l +1

H,(z) =
(2) 14+ az71
e Each pole p; gain-compensated by a zero at z; = 1/p;

e There are papers in the literature describing methods
for designing allpass filters with a prescribed group
delay (see reader for refs)

e For piano strings L is on the order of 10

29

Related Links

e Online draft of the book! containing this material

e Derivation of the wave equation for vibrating stringﬁ

Thttp://ccrma.stanford.edu/” jos/waveguide/
?http://ccrma.stanford.edu/~ jos/waveguide/String_Wave_Equation.html
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Consolidation of Dispersion

Allpass filters are linear and time invariant
which means they commute with other linear and time
invariant elements

(x=3c()T)

o At least one sample of pure delay must normally be
“pulled out” of ideal desired allpass along each rail

e |deal allpass design minimizes phase-delay error P.(w)

e Minimizing || P.(w) — ¢o/c(w) ||, approximately
minimizes tuning error for modes of freely vibrating
string (main audible effect)

e Minimizing group delay error optimizes decay times
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