MUS420/EE367A Lecture 6 (last used in 2001 - superceded by SimpleStrings) Distributed Modeling in Discrete Time

[Julius O. Smith III](http://ccrma.stanford.edu/~jos) (jos@ccrma.stanford.edu) [Center for Computer Research in Music and Acoustics \(CCRMA\)](http://ccrma.stanford.edu/) [Department of Music,](http://www.stanford.edu/group/Music/) [Stanford University](http://www.stanford.edu/) Stanford, California 94305

March 12, 2008

Outline

- Ideal Vibrating String
- Finite Difference Approximation (FDA)
- Traveling-Wave Solution
- Ideal Plucked String
- Sampling Issues
- Lossless Digital Waveguides
- Sampled Traveling Waves versus Finite Differences

1

- Lossy 1D Wave Equation
- Dispersive 1D Wave Equation

Example One-Dimensional Waveguides

- Any elastic medium displaced along 1D
- Air column of a clarinet or organ pipe
	- Air-pressure deviation $p \leftrightarrow$ string displacement y
	- Longitudinal volume velocity $u \leftrightarrow$ transverse string velocity v
- Vibrating strings
	- Really need at least three coupled 1D waveguides:
		- ∗ Horizontally polarized transverse waves
		- ∗ Vertical polarized transverse waves
		- ∗ Longitudinal waves
		- (Typically 1 or 2 WG per string used in practice)
	- Bowed strings also require torsional waves (Typical: one waveguide per string [plane of the bow])
	- Piano requires up to three coupled strings per key
		- ∗ Two-stage decay
		- ∗ Aftersound
		- (Typical: 1 or 2 waveguides per string)

Let's first review the finite difference approximation applied to the ideal string (for comparison purposes):

Position *y* (t,*x*) 0 x 0 K String Tension ε = Mass/Length

Wave Equation

Newton's second law

$$
Force = Mass \times Acceleration
$$

Assumptions

- Lossless
- Linear
- Flexible (no "Stiffness")
- Slope $y'(t, x) \ll 1$

Finite Difference Approximation (FDA)

 $\overline{2}$

$$
\dot{y}(t,x) \approx \frac{y(t,x) - y(t-T,x)}{T}
$$

and

$$
y'(t,x) \approx \frac{y(t,x)-y(t,x-X)}{X}
$$

- $T =$ temporal sampling interval
- $X =$ spatial sampling interval
- \bullet Exact in limit as sampling intervals \rightarrow zero
- Half a sample delay at each frequency. Fix: $\dot{y}(t, x) \approx [y(t + T, x) - y(t - T, x)]/(2T)$

Zero-phase second-order difference:

$$
\begin{aligned} \ddot{y}(t,x) &\approx \frac{y(t+T,x)-2y(t,x)+y(t-T,x)}{T^2} \\ y''(t,x) &\approx \frac{y(t,x+X)-2y(t,x)+y(t,x-X)}{X^2} \end{aligned}
$$

- All odd-order derivative approximations suffer a half-sample delay error
- All even order cases can be compensated as above

FDA of 1D Wave Equation

Substituting finite difference approximation (FDA) into the wave equation $Ky'' = \epsilon \ddot{y}$ gives

$$
K \frac{y(t, x + X) - 2y(t, x) + y(t, x - X)}{X^2}
$$

$$
\epsilon \frac{y(t + T, x) - 2y(t, x) + y(t - T, x)}{T^2}
$$

⇒ Time Update:

 $=$

$$
y(t+T, x) = \frac{KT^2}{\epsilon X^2} [y(t, x+X) - 2y(t, x) + y(t, x-X)]
$$

+2y(t, x) - y(t-T, x)

Let $c \triangleq \sqrt{K/\epsilon}$ (speed of sound along the string). In practice, we typically normalize such that

$$
\bullet\; T=1 \Rightarrow t=nT=n
$$

$$
\bullet\ X=cT=1\Rightarrow x=mX=m, \text{ and }\\[.2cm] \underline{y(n+1,m)}=\underline{y(n,m+1)}+\underline{y(n,m-1)}-\underline{y(n-1,m)}
$$

- Recursive difference equation in two variables (time and space)
	- 5

– Time-varying example:

$$
\frac{\partial y(t,x)}{\partial t}=t^2\frac{\partial y(t,x)}{\partial x}
$$

7

- Time-update recursion for time $n + 1$ requires all values of string displacement (i.e., all m), for the two preceding time steps (times n and $n - 1$)
- Recursion typically started by assuming zero past displacement: $y(n, m) = 0, n = -1, 0, \forall m$.
- Higher order wave equations yield more terms of the form $y(n-l, m-k) \Leftrightarrow$ frequency-dependent losses and/or dispersion characteristics are introduced into the FDA:
- Linear differential equations with constant coefficients give rise to some linear, time-invariant discrete-time system via the FDA

$$
-\;Linear,\; time-invariant,\; "filtered\; waveguide" \; case: \\
$$

$$
\sum_{k=0}^{\infty} \alpha_k \frac{\partial^k y(t, x)}{\partial t^k} = \sum_{l=0}^{\infty} \beta_l \frac{\partial^l y(t, x)}{\partial x^l}
$$

– More general linear, time-invariant case

$$
\sum_{k=0}^{\infty}\sum_{l=0}^{\infty}\alpha_{k,l}\frac{\partial^{k}\partial^{l}y(t,x)}{\partial t^{k}\partial x^{l}}=\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\beta_{m,n}\frac{\partial^{m}\partial^{n}y(t,x)}{\partial t^{m}\partial x^{n}}
$$

– Nonlinear example:

$$
\frac{\partial y(t,x)}{\partial t} = \left(\frac{\partial y(t,x)}{\partial x}\right)^2
$$

Traveling-Wave Solution

One-dimensional lossless wave equation:

$$
Ky'' = \epsilon \ddot{y}
$$

Plug in traveling wave to the right:

$$
y(t, x) = y_r(t - x/c)
$$

$$
\Rightarrow y'(t, x) = -\frac{1}{c} \dot{y}(t, x)
$$

$$
y''(t, x) = \frac{1}{c^2} \ddot{y}(t, x)
$$

- \bullet Since $c \triangleq \sqrt{K/\epsilon}$, the wave equation is satisfied for any shape traveling to the right at speed c (but remember slope $\ll 1$)
- Similarly, any *left-going* traveling wave at speed c , $y_l(t + x/c)$, statisfies the wave equation

8

• General solution to lossless, 1D, second-order wave equation:

$$
y(t, x) = y_r(t - x/c) + y_l(t + x/c)
$$

- $\bullet y_l(\cdot)$ and $y_r(\cdot)$ are arbitrary twice-differentiable functions (slope $\ll 1$)
- Important point: Function of two variables $y(t, x)$ is replaced by two functions of a single (time) variable \Rightarrow reduced complexity.
- Published by d'Alembert in 1747

Laplace-Domain Analysis

- \bullet e^{st} is an eigenfunction under differentiation
- Plug it in:
- $y(t, x) = e^{st+vx}$
- By differentiation theorem

$$
\begin{array}{rcl}\n\dot{y} & = & sy & y' & = & vy \\
\ddot{y} & = & s^2y & y'' & = & v^2y\n\end{array}
$$

• Wave equation becomes

$$
Kv^2y = \epsilon s^2y
$$

\n
$$
\Rightarrow \frac{s^2}{v^2} = \frac{K}{\epsilon} = c^2
$$

\n
$$
\Rightarrow v = \pm \frac{s}{c}
$$

Thus

$$
y(t,x) = e^{s(t \pm x/c)}
$$

is a solution for all s.

Interpretation: left- and right-going exponentially enveloped complex sinusoids

10

General eigensolution:

$$
y(t, x) = e^{s(t \pm x/c)}
$$
, s arbitrary, complex

9

By superposition,

$$
y(t,x) = \sum_{i} A^+(s_i) e^{s_i(t-x/c)} + A^-(s_i) e^{s_i(t+x/c)}
$$

is also a solution for all $A^+(s_i)$ and $A^-(s_i)$.

Alternate derivation of D'Alembert's solution:

- \bullet Specialize general eigensolution to $s \stackrel{\scriptscriptstyle\Delta}{=} j \omega$
- Extend summation to an integral over ω \Rightarrow Inverse Fourier transform gives

$$
y(t,x)=y_r\left(t-\frac{x}{c}\right)+y_l\left(t+\frac{x}{c}\right)
$$

where $y_r(\cdot)$ and $y_l(\cdot)$ are arbitrary continuous functions

Infinitely long string plucked simultaneously at three points marked 'p'

- \bullet Initial displacement $=$ sum of two identical triangular pulses
- At time t_0 , traveling waves centers are separated by $2ct_0$ meters
- String is not moving where the traveling waves overlap at same slope.

For discrete-time simulation, we must sample the traveling waves

- \bullet Sampling interval $\stackrel{\Delta}{=} T$ seconds
- \bullet Sampling rate $\stackrel{\Delta}{=} f_s$ Hz $=1/T$
- \bullet Spatial sampling rate $\stackrel{\Delta}{=} X$ m/s $\stackrel{\Delta}{=} cT$ \Rightarrow systolic grid

For a vibrating string with length L and fundamental frequency f_0 ,

$$
c = f_0 \cdot 2L \qquad \left(\frac{\text{periods}}{\text{sec}} \cdot \frac{\text{meters}}{\text{period}} = \frac{\text{meters}}{\text{sec}}\right)
$$

so that

$$
X = cT = (f_0 2L)/f_s = L[f_0/(f_s/2)]
$$

Thus, the number of *spatial samples* along the string is

$$
L/X = (f_s/2)/f_0
$$

or

Number of spatial samples $=$ Number of string harmonics

13

Examples (continued):

- Sound propagation in air:
	- Speed of sound $c \approx 331$ meters per second
	- $-X = 331/44100 = 7.5$ mm
	- Spatial sampling rate $=\nu_s = 1/X = 133$ samples/m
	- Sound speed in air is comparable to that of transverse waves on a guitar string (faster than some strings, slower than others)
	- Sound travels much faster in most solids than in air
	- Longitudinal waves in strings travel faster than transverse waves

Examples:

- Spatial sampling interval for $(1/2)$ CD-quality digital model of Les Paul electric guitar (strings ≈ 26 inches long)
	- $-X = Lf_0/(f_s/2) = L82.4/22050 \approx 2.5$ mm for low E string
	- $-X \approx 10$ mm for high E string (two octaves higher and the same length)
	- Low E string: $(f_s/2)/f_0 = 22050/82.4 = 268$ harmonics (spatial samples)
	- High E string: 67 harmonics (spatial samples)
- \bullet Number of harmonics $=$ number of oscillators required in additive synthesis
- Number of harmonics $=$ number of two-pole filters required in subtractive, modal, or source-filter decomposition synthesis

Sampled Traveling Waves in any Digital Waveguide

> $x \rightarrow x_m = mX$ $t \rightarrow t_n = nT$

14

$$
\Rightarrow
$$

$$
y(t_n, x_m) = y_r(t_n - x_m/c) + y_l(t_n + x_m/c)
$$

= $y_r(nT - mX/c) + y_l(nT + mX/c)$
= $y_r[(n - m)T] + y_l[(n + m)T]$
= $y^+(n - m) + y^-(n + m)$

where we defined

$$
y^+(n) \stackrel{\Delta}{=} y_r(nT)
$$
 $y^-(n) \stackrel{\Delta}{=} y_l(nT)$

- "+" superscript \implies right-going
- " $-$ " superscript \implies left-going
- $\bullet \; y_r \left[(n-m) T \right] = y^+ (n-m) =$ output of m -sample delay line with input $y^+(n)$
- $\bullet \; y_l \left[(n+m) T \right] \stackrel{\Delta}{=} y^-(n+m) = \textit{input}$ to an m -sample delay line whose *output* is $y^-(n)$

Lossless digital waveguide with observation

points at $x = 0$ and $x = 3X = 3cT$

• Recall:

$$
y(t,x) = y^+ \left(\frac{t - x/c}{T}\right) + y^- \left(\frac{t + x/c}{T}\right)
$$

$$
y(nT, mX) = y^+(n-m) + y^-(n+m)
$$

- Position $x_m = mX = mcT$ is eliminated from the simulation
- Position x_m remains laid out from left to right
- Left- and right-going traveling waves must be summed to produce a *physical* output

$$
y(t_n, x_m) = y^+(n-m) + y^-(n+m)
$$

Relation of Sampled D'Alembert Traveling Waves to the Finite Difference Approximation

Recall FDA result [based on $\dot{x}(n) \approx x(n) - x(n-1)$]: $y(n + 1, m) = y(n, m + 1) + y(n, m - 1) - y(n - 1, m)$

Traveling-wave decomposition (exact in lossless case at sampling instants):

$$
y(n, m) = y^{+}(n - m) + y^{-}(n + m)
$$

Substituting into FDA gives

$$
y(n+1,m) = y(n, m+1) + y(n, m-1) - y(n-1, m)
$$

= $y^+(n-m-1) + y^-(n+m+1)$
+ $y^+(n-m+1) + y^-(n+m-1)$
- $y^+(n-m-1) - y^-(n+m-1)$
= $y^-(n+m+1) + y^+(n-m+1)$
= $y^+[(n+1) - m] + y^-[(n+1) + m]$
 $\stackrel{\Delta}{=} y(n+1, m)$

- FDA recursion is also exact in the lossless case (!)
- Recall that FDA introduced artificial damping in mass-spring systems

• Similar to *ladder* and *lattice digital filters*

Important point: Discrete time simulation is exact at the sampling instants, to within the numerical precision of the samples themselves.

To avoid *aliasing* associated with sampling,

- Require all initial waveshapes be bandlimited to $(-f_s/2, f_s/2)$
- Require all external driving signals be similarly bandlimited
- Avoid nonlinearities or keep them "weak"
- Avoid time variation or keep it slow
- Use plenty of lowpass filtering with rapid high-frequency roll-off in severely nonlinear and/or time-varying cases
- Prefer "feed-forward" over "feed-back" around nonlinearities when possible

18

• The last identity above can be rewritten as

$$
y(n+1,m) \stackrel{\Delta}{=} y^+[(n+1)-m] + y^-[(n+1)+m]
$$

= $y^+[n-(m-1)] + y^-[n+(m+1)]$

- Displacement at time $n + 1$ and position m is the superposition of left- and right-going components from positions $m - 1$ and $m + 1$ at time n
- The physical wave variable can be computed for the next time step as the sum of incoming traveling wave components from the left and right
- Lossless nature of the computation is clear

The ideal vibrating string.

Sources of loss in a vibrating string:

- 1. Yielding terminations
- 2. Drag due to air viscosity
- 3. Internal bending friction

Simplest case: Add a term proportional to velocity:

$$
Ky'' = \epsilon \ddot{y} + \mu \dot{y}
$$
new

More generally,

$$
Ky'' = \epsilon \ddot{y} + \sum_{\substack{m=0 \ m \text{ odd}}}^{M-1} \mu_m \frac{\partial^m y(t, x)}{\partial t^m}
$$

where μ_m may be determined *indirectly* by *measuring* linear damping versus frequency

21

Lossy Digital Waveguide

- Order ∞ distributed system reduced to finite order
- \bullet Loss factor $g=e^{-\mu T/2\epsilon}$ summarizes distributed loss in one sample of propagation
- Discrete-time simulation exact at sampling points
- Initial conditions and excitations must be bandlimited
- Bandlimited interpolation reconstructs continuous case

$$
y(t,x) = e^{-(\mu/2\epsilon)x/c} y_r(t - x/c) + e^{(\mu/2\epsilon)x/c} y_l(t + x/c)
$$

Assumptions:

- Small displacements $(y' \ll 1)$
- Small losses $(\mu \ll \epsilon \omega)$
- $\bullet \ c \stackrel{\Delta}{=} \sqrt{K/\epsilon} = \mathsf{as}$ before (wave velocity in lossless case)

Components decay exponentially in direction of travel Sampling with $t = nT$, $x = mX$, and $X = cT$ gives

$$
y(t_n,x_m)=g^{-m}y^+(n-m)+g^my^-(n+m)
$$
 where
 $g\overset{\Delta}{=}e^{-\mu T/2\epsilon}$

22

Loss Consolidation

- Loss terms are simply constant gains $q \leq 1$
- Linear, time-invariant elements commute
- Applicable to *undriven* and *unobserved* string sections
- Simulation becomes *more accurate* at the outputs (fewer round-off errors)
- Number of multiplies greatly reduced in practice

Frequency-Dependent Losses

- Losses in nature tend to *increase* with frequency
	- Air absorption
	- Internal friction
- Simplest string wave equation giving higher damping at high frequencies

$$
Ky'' = \epsilon \ddot{y} + \mu_1 \dot{y} + \underbrace{+\mu_3 \frac{\partial^3 y(t, x)}{\partial t^3}}_{\text{new}}
$$

- Used in Chaigne-Askenfelt piano string PDE
- $-$ Damping asymptotically proportional to ω^2
- Waves propagate with frequency-dependent attenuation (zero-phase filtering)
- Loss consolidation remains valid (by commutativity)

25

Effects of Stiffness

• Phase velocity increases with frequency

$$
c(\omega) \stackrel{\Delta}{=} c_0 \left(1 + \frac{\kappa \omega^2}{2 K c_0^2}\right)
$$

where $c_0=\sqrt{K/\epsilon}=$ zero-stiffness phase velocity

- Note ideal-string (LF) and ideal-bar (HF) limits
- Traveling-wave components see a frequency-dependent sound speed
- High-frequency components "run out ahead" of low-frequency components ("HF precursors")
- Traveling waves "disperse" as they travel ("dispersive transmission line")
- String overtones are "stretched" and "inharmonic"
- Higher overtones are progressively sharper $(Period(\omega) = 2 \times Length / c(\omega))$
- Piano strings are audibly stiff

Reference: L. Cremer: Physics of the Violin

The Dispersive One-Dimensional Wave Equation

Stiffness introduces a restoring force proportional to the fourth spatial derivative:

$$
\epsilon \ddot{y} = Ky'' \underbrace{-\kappa y''''}_{\text{new}}
$$

where

- \bullet $\kappa = \frac{Q \pi a^4}{4}$ $\frac{\pi a^2}{4}$ (moment constant)
- $a =$ string radius
- $Q =$ Young's modulus (stress/strain) (spring constant for solids)
- Stiffness is a linear phenomenon
	- Imagine a "bundle" or "cable" of ideal string fibers
	- Stiffness is due to the *longitudinal* springiness

Limiting cases

• Reverts to ideal flexible string at very low frequencies $(Ku'' \gg \kappa u''')$

26

• Becomes ideal bar at very high frequencies $(Ky'' \ll \kappa y''')$

Digital Simulation of Stiff Strings

- Allpass filters implement a frequency-dependent delay
- For stiff strings, we must generalize $X = cT$ to

$$
X = c(\omega)T \Rightarrow T(\omega) = X/c(\omega) = c_0T_0/c(\omega)
$$

where $T_0 = T(0) =$ zero-stiffness sampling interval

 \bullet Thus, replace unit delay z^{-1} by

 $z^{-1} \rightarrow z^{-c_0/c(\omega)} \stackrel{\Delta}{=} H_a(z) \quad \text{(frequency-dependent delay)}$

- Each delay element becomes an allpass filter
- In general, $H_a(z)$ is *irrational*
- We approximate $H_a(z)$ in practice using some finite-order fractional delay digital filter

General Allpass Filters

Consolidation of Dispersion

• General, order L , allpass filter:

$$
H_a(z) \triangleq z^{-L} \frac{A(z^{-1})}{A(z)}
$$

=
$$
\frac{a_L + a_{L-1}z^{-1} + \dots + a_1 z^{-(L-1)} + z^{-L}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_L z^{-L}}
$$

 \bullet General order L , monic, minimum-phase polynomial:

$$
A(z) \stackrel{\Delta}{=} 1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_L z^{-L}
$$

where $A(z_i)=0 \Rightarrow |z_i| < 1$ (roots inside unit circle)

- Numerator polynomial $=$ reverse of denominator
- First-order case:

$$
H_a(z) \stackrel{\Delta}{=} \frac{a_1 z^{-1} + 1}{1 + a_1 z^{-1}}
$$

- Each pole p_i gain-compensated by a zero at $z_i = 1/p_i$
- There are papers in the literature describing methods for designing allpass filters with a prescribed group delay (see reader for refs)
- For piano strings L is on the order of 10

29

Allpass filters are linear and time invariant which means they commute with other linear and time invariant elements

- At least one sample of pure delay must normally be "pulled out" of ideal desired allpass along each rail
- Ideal allpass design minimizes phase-delay error $P_c(\omega)$
- Minimizing $\| P_c(\omega) c_0/c(\omega) \|_{\infty}$ approximately minimizes tuning error for modes of freely vibrating string (main audible effect)
- Minimizing group delay error optimizes decay times

30

Related Links

- \bullet Online draft of the book 1 1 containing this material
- Derivation of the wave equation for vibrating strings^{[2](#page-7-1)}

¹<http://ccrma.stanford.edu/~jos/waveguide/> ²http://ccrma.stanford.edu/~jos/waveguide/String_Wave_Equation.html