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Wave Digital Filters

A Wave digital filter (WDF) is a particular kind of digital
filter (or finite difference scheme) based on physical
modeling principles.

• Developed to digitize lumped electrical circuit
elements:

– inductors

– capacitors

– resistors

– gyrators, circulators, etc., (classical circuit theory)

• Each element is digitized by the bilinear transform

• Wave variables are used in place of physical variables
(new), yielding superior numerical properties.

• Element connections involve wave scattering
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Wave Digital Filter (WDF) Construction

Wave digital elements may be derived from their
describing differential equations (in continuous time) as
follows:

1. Express forces and velocities as sums of
traveling-wave components (“wave variables”):

f (t) = f+(t) + f−(t)

v(t) = v+(t) + v−(t)

The actual “travel time” is always zero.
(For historical reasons, WDFs typically use
traveling-wave components scaled by 2.)

2. Digitize via the bilinear transform (trapezoid rule)

3. Use scattering junctions (“adaptors”) to connect
elements together in

• series (common velocity, summing forces), or

• parallel (common force, summing velocities).
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Wave Variable Decomposition
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• The inserted waveguide impedance R0 is arbitrary
because it was physically introduced.

• The element now interfaces to other elements by
abutting its waveguide (transmission line) to that of
other element(s).

• Such junctions involve lossless wave scattering :

F+
R (s) = T (s)F+(s) +KR(s)F

−
R (s)

F−(s) = TR(s)F
−
R (s) +K(s)F+(s)
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Element Reflectance

Imposing physical continuity constraints across the
junction:

F (s) = FR(s)

0 = V (s) + VR(s)

with

F (s) = F+(s) + F−(s)

FR(s) = F+
R (s) + F−

R (s)

V (s) = V +(s) + V −(s) =
F+(s)

R0
−

F−(s)

R0

VR(s) = V +
R (s) + V −

R (s) =

[

F+
R (s)

R(s)
−

F−
R (s)

R(s)

]

we obtain the reflection transfer function (“reflectance”)
of the element with impedance R(s):

SR(s)
∆
=

F−(s)

F+(s)
=

R(s)−R0

R(s) +R0

This is the impedance step over the impedance sum, the
usual force-wave reflectance at an impedance
discontinuity, but now in the Laplace domain.
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Reflectance of Ideal Mass, Spring, and Dashpot

For a mass m kg, the impedance and reflectance are
respectively

Rm(s) = ms

⇒ Sm(s) =
ms−R0

ms +R0

This reflectance is a stable first-order allpass filter, as
expected, since energy is not dissipated by a mass.

For a spring k N/m, we have

Rk(s) =
k

s

⇒ Sk(s) =
k
s −R0

k
s +R0

also allpass as expected.

For a dashpot µ N s/m, we have

Rµ(s) = µ

⇒ Sµ(s) =
µ−R0

µ +R0
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Bilinear Transformation

To digitize via the bilinear transform, we make the
substitution

s = c
1− z−1

1 + z−1

where c is any positive real constant (typically 2/T ).

For the ideal mass reflectance

Sm(s) =
ms−R0

ms +R0

the bilinear transform yields

S̃m(z) =
pm − z−1

1− pmz−1

with

pm
∆
=

mc−R0

mc +R0

Note that |pm| < 1 and |S̃m(e
jωT )| = 1. The stable

allpass nature of the digitized mass reflectance is
preserved by the bilinear transform, as always.

Important Observation:

If we choose R0 = mc, then pm = 0 and
S̃m(z) = −z−1 ⇒ no delay-free path through the mass
reflectance
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Digitized Reflectances Without Delay-Free Paths

Plan:

1. Fix the bilinear-transform frequency-scaling parameter
c once for the whole system (so there is only one
frequency-warping)

2. Set the “connector” wave impedance R0 separately
for each circuit element to eliminate the delay-free
path in its reflectance

3. We will then get scattering when we connect different
elements together

This yields the following elementary reflectances:

Element Reflectance

ideal spring (capacitor) ↔ unit delay

ideal mass (inductor) ↔ unit delay and sign inversion

ideal dashpot (resistor) ↔ 0

The original element values remain only in the
waveguide-interface impedances R0 = k/c,mc, µ
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Wave Digital Elements

In summary, our chosen digital element reflectances
(and their connecting wave impedances R0) are

• “Wave digital mass” (interface impedance R0 = mc)

S̃m(z) = −z−1 (mass reflectance)

• “Wave digital spring” (R0 = k/c)

S̃k(z) = z−1 (spring reflectance)

• “Wave digital dashpot” (R0 = µ)

S̃(z) = 0 (dashpot [non-]reflectance)

(In this case, the interface is the element itself.)

These are the discrete-time reflectances of the basic
circuit building-blocks as seen from their
interface-waveguides

We still have the usual freedom in choosing our
bilinear-transform frequency-scaling constant c
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Elementary Wave Flow Diagrams
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Example: “Piano hammer in flight”

Mass m at constant velocity, force-wave simulation:

(a) (b)

x(n)

f−(n)

f+(n)

=

x(n)

−1

z−1
−1 z−1

• The reflecting termination on the left corresponds to
zero force on the mass

• A nonzero state variable x(n) corresponds to a
nonzero velocity for the mass:

v(n) = v+(n) + v−(n) =
f+(n)

R0
−

f−(n)

R0

=
f+(n)

mc
+

f+(n− 1)

mc
=

x(n + 1) + x(n)

mc

=
2

mc
x(n) =

T

m
x(n)

when c = 2/T is chosen for the bilinear transform
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Mass Momentum and Energy

• Above we found the mass velocity to be

v(n) =
2

mc
x(n) =

T

m
x(n)

when c = 2/T is chosen for the bilinear transform

• The momentum of the mass is therefore

p(n)
∆
= mv(n) =

2

c
x(n) = T x(n)

when c = 2/T

• State variable x(n) = p(n)/T is
mass momentum per sample

• Since momentum is conserved, momentum waves are
good to consider in place of velocity waves

• The kinetic energy of the mass is given by

Em =
1

2
mv2(n) =

p2(n)

2m
=

2

mc2
x2(n) →

[T x(n)]2

2m

for c → 2/T

• The potential energy of the mass-in-flight is of course
zero (f (n) ≡ 0)
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Force Driving a Mass

f (n) = f+(n) + f−(n) ⇒ f+(n) = f (n)− f−(n)

(b)(a)

f+(n)

−f−(n)

x(n)

f(n) f(n)

x(n)

=

f+(n)

f−(n)
−1

z−1z−1
−1

Wave digital mass driven by external force f (n).
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Traveling-Wave View of Driving Force
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• Parallel junction with R0 = 0 on the force side and
R0 = mc on the mass side

• Corresponds to an ideal voltage (force) source having
a zero source impedance

• Impedance step over impedance sum is
R = (mc− 0)/(mc + 0) = 1

• Obviously non-physical (see next page)
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Zero Source-Impedances are Non-Physical

We postulated the following driving-source interface:

R0 = mc

x(n)

f(n)

−1

f+
2 (n) = f−

m(n)

f−
2 (n) = f+

m(n)

f+
1 (n) =

f(n)
2

f−
1 (n) =

f(n)
2

wave digital mass

=

R0 = 0 1

0

2

z−1

−1

z−1

Non-physical because:

• Velocity transmission is zero ⇒ no power delivered

• There can be no traveling force (voltage) wave in a
zero impedance (which would “short it out”)

• Recall power waves: [f+(n)]2/R0 = ∞ if f+(n) 6= 0

• Zero source-impedances can be a useful idealization,
but be careful

• Exercise: Study the case of small R0 = ǫ > 0
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Spring-Driven Mass

To keep the model physical, let’s use a pre-compressed
spring as our force-source for driving the mass:

vk(t) + vm(t) = 0m
vk(t)

k
vm(t)

f = fm = fk

Physical Diagram

-

++

-
1
k

m

fm
v = vk = vmfk

Equivalent Circuit

• The mass and spring form a loop, so the connection
can be defined as either parallel or series (as
determined by the element reference directions)
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• We arbitrarily choose a parallel junction, giving the
following physical constraints:

– fk(n) = fm(n) (common force)

– vk(n) + vm(n) = 0 (sum of
spring-compression-velocity and rightgoing-mass
velocity is zero)

• Exercise: Work out the case for a series junction and
verify everything comes out the same physically

• Connecting our wave digital spring and mass at a
parallel force-wave junction is depicted as follows:

f+
k f−

m

k

c mc

f−
k

z−1

−1

z−1

WDF Diagram

Note the WDF symbol “||” for a parallel adaptor
(scattering junction)
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Expanded Wave Digital Spring-Mass System

f+
m(n)

s

x2(n)

x1(n)

wave digital masswave digital spring

f−
k (n)

f+
k (n) f−

m(n)

1 + s

1− s

−s z−1

−1

z−1

State variables labeled x1(n) and x2(n)

Low-Frequency Analysis:

• Assume sampling rate fs = 1/T is large ⇒
• Bilinear transform constant c = 2/T
• Frequency warping not an issue
• Physical simulation should be very accurate

The reflection coefficient for our parallel force-wave
connection is given as usual by the impedance step over
the impedance sum:

s =
mc− k/c

mc + k/c
=

m2/T − kT/2

m2/T + kT/2
=

m− kT 2/4

m + kT 2/4
≈ 1

We can now see what’s going physically at low
frequencies relative to the sampling rate:
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Low-Frequency Spring-Driven-Mass Analysis

Referring to the previous figure:

• We found earlier that x2(n) ≈ pm(n)/T where pm(n)
is the mass momentum at time n, and T is the
sampling interval

• We similarly find that x1(n) = f−
k (n) ≈ f (n)/2, so

that the mass sees (1 + s)f (n)/2 ≈ f (n) coming in
each sample from the summer, i.e.,

pm(n)

T
≈

pm(n− 1)

T
+ f (n)

• Multiplying through by T gives the momentum
update per sample:

pm(n) ≈ pm(n−1)+f (n)T
∆
= pm(n−1)+∆p(n)

where ∆p(n)
∆
= f (n)T is the momentum transferred

to the mass by constant force f (n) during one
sampling interval T

• This makes physical sense and suggests momentum
and momentum-increment samples as an appealing
choice of wave variables
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Classic WDF Wave Variables

We have been using our usual traveling-wave
decomposition of force and velocity waves:

f (t) = f+(t) + f−(t) = R0v
+(t)−R0v

−(t)

v(t) = v+(t) + v−(t) =
f+(t)

R0
−

f−(t)

R0

where R0 is the wave impedance of the medium, or
[

f (t)

v(t)

]

=

[

R0 −R0

1 1

] [

v+(t)

v−(t)

]

=

[

1 1
1
R0

− 1
R0

] [

f+(t)

f−(t)

]

Inverting these gives
[

v+(t)

v−(t)

]

=
1

2

[

1/R0 1

−1/R0 1

] [

f (t)

v(t)

]

[

f+(t)

f−(t)

]

=
1

2

[

1 R0

1 −R0

] [

f (t)

v(t)

]

In the WDF literature, the second case is typically used,
multiplied by 2, and replacing force and velocity by
voltage and current:

a(t) = v(t) +R0 i(t)

b(t) = v(t)−R0 i(t)

where v(t) is now voltage and i(t) denotes current.
Thus, a(t) = 2v+(t) and b(t) = 2v−(t) (doubled voltage
traveling-wave components)
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Binary Connection Tree

It has become common practice to organize WDF
elements into a Binary Connection Tree (BCT):

+
R C1

C2

R

v(n)

v(t)

C2

C1

-

z−1

z−1
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Reflection-Free Ports

• The symbol ⊥ on a WDF adaptor port denotes a
reflection-free port (RFP)

• To make a port reflection-free, its wave-impedance
must be the

– parallel combination of the other port impedances
for a parallel adaptor, or

– series combination of the other port impedances
for a series adaptor

This choice of port impedance zeros the impedance
step “seen” by waves in the RFP, thus suppressing
instantaneous reflection from it

• All ports outgoing from the BCT root must be RFPs,
for computability (no delay-free loops)

• Computations propagate (each sample) from the
leaves of the tree (delay element outputs) up to the
root, where there is an apex reflection which then
propagates back down to all of the reflection-free
ports, thereby updating all of the delay elements
(capacitor/spring and inductor/mass states)

• When an element value changes (typically a resistor),
RFPs must be recalculated up to the root.
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Reflection-Free Port Coefficients

For an N -port adaptor, with port wave-impedances Ri,
i = 1, 2, . . . , N , let’s arbitrarily designate port N as the
reflection-free port (the one on top). It is convenient to
define the port conductances Gi

∆
= 1/Ri. To suppress

reflection on port N , we need, for a parallel adaptor,

RN = R1 ‖ R2 ‖ · · · ‖ RN−1 ⇔

GN = G1 +G2 + · · · +GN−1

and, for a series adaptor,

RN = R1 +R2 + · · · +RN−1.

Recall the alpha parameters for an N -port series
scattering junction, derived from the physical constraints
that the velocities be equal and the forces sum to zero at
the (series) junction:

αi
∆
=

2Ri

R1 +R2 + · · · +RN
=

Ri

RN

when port N is reflection free.

Since
∑N

i=1 αi = 2, we have αN = 1 and

N−1
∑

i=1

αi = 1 .
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Example

See page 42 of David Yeh’s WDF Tutorial1

Shockley diode equation (“diode law”)

I(t) = Is ·

(

e
Vd
nVT − 1

)

where

I = diode current

Is = diode reverse leakage current

Vd = voltage across the diode

n = ideality factor (1 for ideal, up to 2 or more otherwise)

VT = thermal voltage kT/q

k = Boltzmann constant

q = electron charge

T = temperature

1https://ccrma.stanford.edu/~dtyeh/papers/wdftutorial.pdf
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Topology Issues

• Classical WDFs are composed of parallel and series
connections of elements

• A Binary Connection Tree (BCT) can represent any
such parallel/series network

• R-Nodes

– Some circuits, such as the “bridged T” circuit,
cannot be represented using parallel/series
connections of elements

– These circuits are modeled using more general
scattering matrices (Belevitch)

– Such circuits are called R-Nodes in the overall
WDF network graph

– R-Nodes connect naturally to BCT graphs, since
all signals are compatible traveling-wave
components

– An open issue is how to minimize the
computational complexity of R-node scattering
matrices
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SPQR Decomposition

Every graph can be decomposed into Series (S), Parallel
(P), and R (“Rigid”) type subgraphs (Q is the degenerate
case consisting of only one graph edge)

• S and P handled by standard WDF methods (BCT)

• R node characterized by its scattering matrix

• Modified Nodal Analysis (MNA) may be used to find
the R-node scattering matrix (see Werner et al.
reference below)
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WDF State Space Interpretation

Digital filters can be expressed in state-space form as

x(n + 1) = Ax(n) + B u(n)

by simply enumerating all delay elements as state
variables xT (n) = [x1(n), x2(n), . . . , xN(n)], and finding
the state transition matrix A by inspection. Any inputs
are collected in u(n) and determine the B matrix.

• For WDFs, the A matrix is a scattering matrix

• The A matrix is orthogonal (lossless) for reactive
elements (masses, springs)

• The state variables are all sampled traveling waves

• Physical state variables (bilinear transformed) are
obtainable by summing (capacitors, springs) or
subtracting (inductors, masses) the input and output
of the unit delays:

yk(n) = xk(n)± xk(n− 1)

• In comparison to other state-space models, WDF
state-space form has top numerical properties due to
its lossless scattering formulation
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Nonlinear Wave Digital Filters

Nonlinear elements must be placed at the root of the
Binary Connection Tree (BCT):

• A typical instantaneous nonlinearity is a nonlinear
resistor R(v) (such as a diode) or a dependent source
(as used in transistor models, etc.)

• Because the resistance of a nonlinear resistor depends
on the voltage across it, there is no way to avoid an
instantaneous reflection in general (no fixed
port-impedance can match it for all input conditions)

• The nonlinearity is placed at the root of the BCT
A delay-free path is “computable” only there (we get
one per tree)

• Each sample, computations propagate up the tree to
the root, reflecting instantaneously, then back down
to all the reflection-free ports
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Nonlinear Wave Digital Filters, Continued

Computational Strategies:

• The nonlinear reflectance can be pre-computed and
stored for fast interpolated table look-up in real time
(no iterations)

• When there are several nonlinear elements at the root,
Newton iterations are typically used instead of tables

• Alternatively, all nonlinearities can be placed at the
root of the WDF tree and connect to the BCT
through an R-Node. References:

1. “Wave Digital Filter Adaptors for Arbitrary
Topologies and Multiport Linear Elements”2

2. “Resolving Wave Digital Filters with
Multiple/Multiport Nonlinearities”3

Kurt Werner et al.
Int. Conf. Digital Audio Effects (DAFx-15)
Trondheim, Norway, 2015

2http://www.ntnu.edu/documents/1001201110/1266017954/DAFx-15_submission_53.pdf
3https://www.ntnu.edu/documents/1001201110/1266017954/DAFx-15_submission_54.pdf
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Dynamic Nonlinearities

Nonlinearities can be instantaneous or dynamic
(having memory)

• A dynamic nonlinearity can sometimes be converted
into an instantaneous nonlinearity:

• Convert to the physical units in which the nonlinearity
is instantaneous
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Choice of WDF Topology

Summarizing points above,

• Generally try to make a Binary Connection Tree
(BCT) using only three-port adaptors

• At the root of the tree, include all

– nonlinearities

– non-adaptable elements such as switches

• When everything is linear and adaptable, place a
time-varying element at the root, to minimize update
propagation when that element changes

• When multiple elements are at the root, or when
topology is not merely series + parallel connections,
there will generally be at least one R node
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Free WDF Software

Real Time Wave Digital Filter Software (DAFx-2016):

• GitHub: RT-WDF

• DAFx16 Paper

Overview and Demo of Various Wave Digital Filter
Software (DAFx-2015, KeyNote 2, Part 2):

• Video (YouTube)

• Slides (PDF)

WDF References

1. A. Fettweis, “Wave digital filters: Theory and
practice,” Proc. IEEE, vol. 74, no. 2, pp. 270–327,
1986.

2. F. Pedersini, A. Sarti, and S. Tubaro, “Object-based
sound synthesis for virtual environments-using musical
acoustics,” IEEE Signal Process. Magazine, vol. 17,
no. 6, pp. 37–51, Nov. 2000.

32

https://github.com/m-rest/rt-wdf.git
https://www.youtube.com/watch?v=kUk35_WwTEQ
https://ccrma.stanford.edu/~jos/pdf/DAFx-2015-jos-keynote2part2.pdf


3. G.DeSanctis and A.Sarti,“Virtual analog modeling in
the wave-digital domain,” IEEE Trans. Audio,
Speech, and Language Process., vol. 18, no. 4, pp.
715–727, May 2010.

4. A. Sarti and G. De Sanctis, “Systematic methods for
the implementation of nonlinear wave-digital
structures,” IEEE Trans. Circuits and Systems I:
Regular Papers, vol. 56, no. 2, pp. 460–472, Feb.
2009.

5. K. Meerkötter and R. Scholz, “Digital simulation of
nonlinear circuits by wave digital filter principles,” in
IEEE Int. Symposium Circuits and Systems (ISCAS),
vol. 1, June 1989, pp. 720–723.

6. T. Felderhoff, “A new wave description for nonlinear
elements,” in IEEE Int. Symposium on Circuits and
Systems, vol. 3, Sep. 1996, pp. 221–224.

7. A. Sarti and G. De Poli, “Toward nonlinear wave
digital filters,” IEEE Trans. Signal Process., vol. 47,
no. 6, pp. 1654–1668, June 1999.

8. G. De Sanctis, A. Sarti, and S. Tubaro, “Automatic
synthesis strategies for object-based dynamical
physical models in musical acoustics,” in Proc. Int.
Conf. Digital Audio Effects (DAFx-03), Sep. 2003,

33



pp. 198–202.

9. R. C. D. Paiva, S. D’Angelo, J. Pakarinen, and V.
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