Closed-Form Coefficient Functions

Example: Two-Pole Resonator

\[H(z) = \frac{g}{1 - 2R \cos(\theta) \cdot z^{-1} + R^2 \cdot z^{-2}} \]

where

\[\theta = 2\pi f_r T = \text{pole angle (} f_r = \text{resonance frequency)} \]
\[R = e^{\pi BT} = \text{pole radius (} B = \text{resonant bandwidth)} \]

Generalization:

- Write filter frequency response in terms of the coefficients
- Find formulas for coefficients in terms of useful spectral parameters such as Bandwidth, Peak Gain, Q, and so on
- If the equations can be inverted, then we have formulas for the filter coefficients in terms of the desired spectral parameters

Multiple Static Designs/Coefficient Interpolation

- In this method, we sample the desired multidimensional frequency response, design filters at the sample points, then interpolate between the design locations to get coefficients when running
- Multidimensional Frequency Responses represent the desired frequency response as a function of the desired parameters \(\Psi_i \):
 \[H_{\text{des}}(\omega, \Psi_1, \ldots, \Psi_n) \]
- The sampled response (sampling across \(\Psi_i \)) can be viewed as a multidimensional matrix:
 \[H[k, m_1, \ldots, m_n] = H_{\text{des}}(\omega_k, m_1\Delta_1, \ldots, m_n\Delta_n) \]
 where, e.g., \(n_i\Delta_i = \Psi_i^{\text{max}} \).

Multidimensional Frequency Response Example 1

Varying \(\Psi_{\text{corner}} \) in \(H_{\text{des}}(\omega, \Psi_{\text{corner}}, \Psi_{\text{resonance}}) \):
Multidimensional Frequency Response Example 2

Varying $\psi_{\text{resonance}}$ in $H_{\text{des}}(\omega, \psi_{\text{corner}}, \psi_{\text{resonance}})$:

Multidimensional Frequency Response

FIR Filter Design

- The filter at each parameter setting is designed using some optimization method (pick your favorite)
- When designing a variable FIR filter, this method works well when the parameters ψ are sampled sufficiently densely
- The resulting FIR coefficients often interpolated well from one ψ samples to the next

When designing variable IIR filters, this method has some drawbacks:

Multidimensional Frequency Response

IIR Filter Design

- Since the IIR filter-design problem is normally non-convex, designs for filters at neighboring parameter samples may end up at relatively different local minima
- ‘Small’ changes in parameters may not correspond to ‘small’ changes in filter coefficients
- Filter coefficients can thereby become discontinuous functions of parameters and therefore not interpolate well
- The interpolated filter coefficients may give a filter completely different from either of the statically designed filters it is interpolating between
- Design methods can add constraints to keep coefficients continuous in the parameters.
 - One method used the coefficients from a neighboring, already-designed point as the starting guesses for the design, which reduces the chances of ending up at a distant minimum.

- Importantly, there is no guarantee that the IIR filter will remain stable using interpolated coefficients, even if all the designed filters are stable
- Design methods that design to some stability margins can reduce the problem, at the cost of restricted possible designs
- Desired responses with nearly unstable (“high-Q”) regions will be more prone to this problem (example: virtual analog VCF)

The datasets for multidimensional filter-design method can become very large, especially as the number of control parameters gets large.
Outer Product Expansion

This method performs a principal-components analysis of the multidimensional frequency response, and implements the variable filter as a weighted sum of static filters. With a single control parameter Ψ_1, we have the expansion

$$H_{\Psi_1} = \sigma_1 \left[\begin{array}{c} F_1 \\ \vdots \\ F_n \end{array} \right]$$

Since

$$H_{i,\omega} = \sum_{k=1}^{n} \sigma_k G_k F_k(\omega),$$

we see that any point in control-frequency space $H_{i,\omega}$ is a weighted sum of samples from frequency-space functions F_k (i.e., filters) and control-space functions G_k.

We can add more control parameters:

$$H_{i_1, \ldots, i_m, \omega} = \sum_{k=1}^{n} [\sigma_k G_{i_1}(i_1) \cdots G_{i_m}(i_m) F_k(\omega)]$$

Interpolated Outer Product Expansion Filters

- When implemented as shown, we must worry about the filters’ phase responses:
 - The design usually ignores the phase of the desired response, to keep G_i real in the expansion, and to keep them from cancelling each other
 - The paper introducing this idea restricted the phases to be equal, and used linear-phase FIR filters

Interpolated Outer Product Expansion

In the multi-controller outer-product expansion

$$H_{i_1, \ldots, i_m, \omega} = \sum_{k=1}^{n} [\sigma_k G_{i_1}(i_1) \cdots G_{i_m}(i_m) F_k(\omega)]$$

we may interpolate the control space:

$$H_{\Psi_1, \ldots, \Psi_m, \omega} = \sum_{k=1}^{n} [\sigma_k g_{i_1}(\Psi_1) \cdots g_{i_m}(\Psi_m) F_k(\omega)]$$

where the g_i are interpolating functions of the G_i.

- The F_i are designed to the frequency-axis components of the outer-product expansion of the desired response
- The $g_{i,j}$ are interpolating functions derived from the control-axes components of the outer-product expansion
- This method overcomes the stability problem of the previous method, since all the filters are static, and can be designed to be stable

where

- F_i = ‘principal-component’ filters
- $g_{i,j}$ = interpolated control functions
Spectrum Warping

This method uses the fact that we can use the bilinear transform to map the unit circle onto itself warped. In particular, we can map $z = 1$ to $\tilde{z} = 1$, $z = -1$ to $\tilde{z} = -1$, and have one more degree of freedom left. Such a map is

$$z^{-1} \leftarrow \frac{z^{-1} - \beta}{1 - \beta z^{-1}}$$

which, when the delays in a filter are replaced by the given allpass filter, preserves the magnitude response, but warps the frequency axis according to β.

Thus a prototype filter (low-pass, for example) can be warped to place its corner frequency anywhere in the frequency range, so that β becomes a simple and efficient tuning sweep control.

This method has a problem when applied to IIR prototype filters: the allpass filter has a delay-free path, which makes the feedback paths of the IIR filter unimplementable. Various methods exist to fix this problem, involving placing a delay in the loop, and fixing up the feedback coefficients. Unfortunately, all of these methods require that the fixed-up coefs be recomputed each time β is changed, though some are much more efficient than others.

Another spectrum warping method, which preserves linear-phase in FIR filters, was proposed in “Variable Cutoff Linear Phase Digital Filters”, Oppenheim, Mecklenbräuker, & Mersereau, IEEE Trans. Circuits and Systems, v23 n4, April 1976.

Heterodyne Filters

- Use heterodyning to implement a sweepable filter using a fixed lowpass filter and heterodyning.
- Heterodyning is multiplication by a complex sinusoid $e^{-j\omega_c t}$ tuned to the “sweep frequency” ω_c.
- The fixed filter’s bandwidth is a bandwidth control.
- Requires analytic input signal (i.e., first filter out negative frequencies).

General Advice

- Concentrate on finding a filter structure that makes the transformation from control parameters to coefficients trivially simple and/or efficient.
- Control separability $[a_i(\Psi_1, \ldots, \Psi_n) = \prod_{k=1}^n a_{ik}(\Psi_k)]$ is desired because it makes the a_{ik} much simpler.
- Try to use the Closed-Form Coefficient Function method, with simple coefficient functions.
- Alternatively, a sparsely-sampled version of the Static-Design method is fine, as simple (smooth) coefficient functions should correspond to simple interpolations.
- Most of the previously mentioned methods use direct-form or other standard forms, though most could be applied to nonstandard structures, like the Moog structure, if we have design methods for those structures (which is likely).
References

• Multiple Static Designs with Coefficient Interpolation
 Example Paper: Zarour & Fahmy, “A Design Technique for
 Variable Digital Filters”, IEEE Trans Circuits and Systems, v36
 n11, Nov 1989

• Outer Product Expansion
 Deng & Soma, “Variable Digital Filter Design Using the Outer
 Product Expansion” IEE Proc.-Vision Image Signal Processing,
 v141 n2, April 1994

• Spectrum Warping
 Original Paper: Schüssler & Winkelnkemper, “Variable Digital
 Filters”, 1970, reprinted in Rabiner & Rader Digital Signal
 Processing

• Heterodyne Filters
 Moorer, James A. “The Heterodyne Filter as a Tool for Analysis
 of Transient Waveforms,” Report No. STAN-CS-73-379,
 Stanford University: Computer Science Department, 1973

 “Analyzing the Moog VCF with Considerations for Digital
 Implementation,” Tim Stilson and Julius Smith, ICMC96; and
 “Efficiently Variable Algorithms in Virtual-Analog Music
 Synthesis—A Root-Locus Perspective,” Stilson’s CCRMA
 PhD/EE thesis (both at
 http://ccrma.stanford.edu/~stilti/)