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• Moving String Termination

• Wave Impedance

• Displacement, Velocity, Acceleration Waves

• Force Waves

• Root-Power Waves
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Moving Termination: Ideal String
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Uniformly moving rigid termination for an ideal string
(tension K, mass density ǫ) at time 0 < t0 < L/c.

Driving-Point Impedance F0/V0:

y′(t0, 0) = −v0t0
ct0

= −v0
c
= − v0

√

K/ǫ

⇒ f0 = −K sin(θ) ≈ −Ky′(t, 0) =
√
Kǫ v0

∆
= Rv0

• If the left endpoint moves with constant velocity v0
then the external applied force is f0 = Rv0

• R
∆
=
√
Kǫ

∆
= wave impedance (for transverse waves)

• Equivalent circuit is a resistor (dashpot) R > 0

• We have the simple relation f0 = Rv0 only in the
absence of return waves, i.e., until time t0 = 2L/c.
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• Interactive Animation1
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String Driven by Moving Termination
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• Successive snapshots of the ideal string with a
uniformly moving rigid termination

• Each plot is offset slightly higher for clarity

• GIF89A animation at

http://ccrma.stanford.edu/~jos/swgt/movet.html

1http://phet.colorado.edu/simulations/sims.php?sim=Wave_on_a_String
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Waveguide “Equivalent Circuits” for the

Uniformly Moving Rigid String Termination
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a) Velocity waves b) Force waves

• String moves with speed v0 or 0 only

• String is always one or two straight segments

• “Helmholtz corner” (slope discontinuity) shuttles
back and forth at speed c

• String slope increases without bound

• Applied force at termination steps up to infinity

– Physical string force is labeled f (n)

– f0 = Rv0 = incremental force per period
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Overview of Wave Variable Choices

We have thus far considered only transverse displacement
waves. We can also choose

• Transverse velocity v
∆
= ẏ

• Transverse acceleration a
∆
= ÿ

• Slope waves y′

• Curvature waves y′′ (= c2ÿ for ideal string)

• Any number of derivatives or integrals of
displacement y with respect to time or position

• Conversion between time derivatives carried out by
integrators and differentiators

� 
 � 

 a(t) v(t)
. . . . . .

y(t)

td

d

td

dv(t) a(t)

A(s) V(s)
. . . . . .

Y(s) V(s) A(s)
1

s

1

s
s s

5

Specifying String State

The complete state of the string is given at time n by

• {y(tn, xm), ẏ(tn, xm)}N−1
m=0 (typical in acoustics)

• {y(tn, xm), y(tn−1, xm)}N−1
m=0 (typical in acoustic

simulations)

• {y+(n−m), y−(n +m)}N−1
m=0 (what we did)

• {y′+(n−m), y′−(n +m)}N−1
m=0 (today)

• {v+(n−m), v−(n +m)}N−1
m=0 (today)

• Any two linearly independent variables
(either physical variables or wave variables)

• All traveling-wave variables can be computed from
any others, as long as string state is specified

• Wave variable conversions requiring differentiation or
integration are relatively expensive since a large-order
digital filter is necessary to do it right
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String State, Cont’d

Velocity waves are a good overall choice for strings
because

• It is less noisy numerically to integrate for
displacement than to differentiate for velocity

• Force (slope) waves = scaling of velocity waves
(as we will show shortly)

• Analogous to volume velocity in acoustic tubes
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First-Order Discrete-Time Wave-Variable

Conversion Filters

a) First-Order Difference b) First-Order “Leaky” Integrator
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• First-order difference:

v̂(n) = y(n)− y(n− 1)

• First-order “leaky” integrator:

ŷ(n) = v(n) + gŷ(n− 1), g < 1, g ≈ 1

(loss factor g avoids DC build-up)
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Filter Design Approach

• Ideal Digital Differentiator:

H(ejωT ) ≈ jω, ω ∈ [−π/T, π/T ]

• Ideal Digital Integrator

H(ejωT ) ≈ 1

jω
, ω ∈ [−π/T, π/T ]

• Exact match is not possible in finite order

• Minimize
∥
∥
∥H(ejωT )− Ĥ(ejωT )

∥
∥
∥ where Ĥ is the

digital filter frequency response
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Ideal Differentiator Frequency Response
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• Discontinuity at z = −1 ensures no exact finite-order
solution

• Need oversampling factor, as in interpolator design
(e.g., 20 kHz to 22.05 kHz)
Response is unconstrained between bandlimit and
fs/2

• As before, a small increment in oversampling factor
yields a much larger decrease in required filter order
to meet a given spec
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Spatial Derivatives

Slope waves are simply related to velocity waves.
By the chain rule,

y′(t, x)
∆
=

∂

∂x
y(t, x)

= y′r(t− x/c) + y′l(t + x/c)

= −1

c
ẏr(t− x/c) +

1

c
ẏl(t + x/c)

→ −1

c
v+(n−m) +

1

c
v−(n +m)

⇒
y′+ = − 1

cv
+

y′− = 1

cv
−

or
v+ = − cy′+

v− = cy′−

• Physical string slope = (lower rail - upper rail)/c
in a velocity-wave simulation

• ⇒ v−(0 +m) = v+(0−m) ∀m on a struck string
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Wave Impedance

We just showed
y′+ = − 1

cv
+

y′− = 1

cv
−

Define new wave variables in terms of slope waves as

f+ ∆
= −Ky′+

f− ∆
= −Ky′−

Note that f± are in physical units of force.
We have

f+ = K
c v

+

f− = − K
c v

−

Recall

c =

√

K

ǫ

⇒ K

c
=

√
Kǫ

∆
= R

which is the wave impedance of the ideal string
(force/velocity for traveling waves). Thus,

f+ = Rv+

f− = − Rv−
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Ohm’s Law for Traveling Waves

We just derived Ohm’s Law for Traveling Waves on an

Ideal String

f+(n) = Rv+(n)
f−(n) = − Rv−(n)

where the velocity waves are defined in terms of
transverse string displacement by

v+(n)
∆
= ẏ+(n)

v−(n)
∆
= ẏ−(n),

f+ and f− are corresponding force waves, and

R
∆
=
√
Kǫ is the wave impedance of the string:

R
∆
=

√
Kǫ =

K

c
= ǫc
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Force Waves

Position

y (t,x)

0

Displacement

0
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( )K sin θ
K

− K
( )θ− K sin

( )θ− K cos θ

x

• Vertical force acting to the left is

fl(t, x) = K sin(θ) ≈ K tan(θ) = K y′(t, x)

• Opposing force, acting to the right, is

fr(t, x) = −K sin(θ) ≈ −K y′(t, x)

(Note that a negative slope pulls “up” on the
segment to the right)

• These forces must cancel since a nonzero net force on
a massless point would produce infinite acceleration

14

To unify vibrating strings with acoustic tubes, we choose
the force which acts to the right as our force wave
variable:

f (t, x)
∆
= fr(t, x) = −Ky′(t, x)

• Analogous to longitudinal pressure in acoustic tubes

• We have

f (t, x) =
K

c
[ẏr(t− x/c)− ẏl(t + x/c)]

• Force waves are thus proportional to velocity waves

• Proportionality constant is called the wave impedance
(or characteristic impedance) of the string:

R
∆
=
√
Kǫ =

K

c
= ǫc

• Wave impedance = geometric mean of spring stiffness
and inertial mass

• Traveling force-wave components:

f+(n) = Rv+(n)
f−(n) = − Rv−(n)

For acoustic tubes, we have

p+(n) = R
T
u+(n)

p−(n) = − R
T
u−(n)

where
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• p+(n) = right-going longitudinal pressure

• p−(n) = left-going longitudinal pressure

• u±(n) = left and right-going volume-velocity waves

• wave impedance is

R
T
=

ρc

A
(Acoustic Tubes)

where

– ρ = mass per unit volume of air

– c = sound speed in air

– A = cross-sectional area of tube

• For particle velocity, wave impedance = R0 = ρc

• Particle velocity is appropriate in open air, while
volume velocity is used for acoustic tubes
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Power Waves

Physically,

Power = Work/Time

= Force× Distance/Time

= Force× Velocity

Traveling power waves:

P+(n)
∆
= f+(n)v+(n)

P−(n)
∆
= − f−(n)v−(n)

From “Ohm’s law” f+ = Rv+ and f− = −Rv−, we have

P+(n) = R [v+(n)]2 =
[f+(n)]2

R

P−(n) = R [v−(n)]2 =
[f−(n)]2

R

Note that both P+ and P− are nonnegative

Summing traveling powers gives total power:

P(tn, xm)
∆
= P+(n−m) + P−(n +m)

If we had instead defined P−(n)
∆
= f−(n)v−(n) (no

minus sign in front), then summing the traveling powers
would give net power flow.
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Energy Density Waves

Energy density = potential + kinetic energy densities:

W (t, x)
∆
=

1

2
Ky′2(t, x)

︸ ︷︷ ︸

potential

+
1

2
ǫẏ2(t, x)

︸ ︷︷ ︸

kinetic

Sampled wave energy density can be expressed as

W (tn, xm)
∆
= W+(n−m) +W−(n +m)

where

W+(n) =
P+(n)

c
=

f+(n)v+(n)

c
= ǫ

[
v+(n)

]2
=

[f+(n)]2

K

W−(n) =
P−(n)

c
= −f−(n)v−(n)

c
= ǫ

[
v−(n)

]2
=

[f−(n)]2

K

Total wave energy in string of length L:

E(t) =
∫ L

x=0

W (t, x)dx ≈
L/X−1
∑

m=0

W (t, xm)X
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Root-Power Waves

Wave variables normalized to square root of power
carried:

f̃+ ∆
= f+/

√
R f̃− ∆

= f−/
√
R

ṽ+
∆
= v+

√
R ṽ−

∆
= v−

√
R

⇒
P+ = f+v+ = f̃+ṽ+

= R (v+)2 = (ṽ+)2

= (f+)2/R = (f̃+)2

and
P− = −f−v− = −f̃+ṽ+

= R (v−)2 = (ṽ−)2

= (f−)2/R = (f̃−)2

• Normalized wave variables f̃± and ṽ± behave
physically like force and velocity waves

• Either can be squared to obtain signal power

• Dynamic range is normalized in L2 sense

• Driving a normalized waveguide network with unit
variance white noise gives signal power equal to 1
throughout the network

• Time-varying wave impedances do not cause
“parametric amplification”
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