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Outline

e Moving String Termination

e Wave Impedance

e Displacement, Velocity, Acceleration Waves
e Force Waves

e Root-Power Waves

e Interactive Animation?

String Driven by Moving Termination

Displacement y

Position x

e Successive snapshots of the ideal string with a
uniformly moving rigid termination

e Each plot is offset slightly higher for clarity
e GIF89A animation at

http://ccrma.stanford.edu/” jos/swgt/movet.html

'http://phet.colorado.edu/simulations/sims.php?sin=Wave_on_a_String
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Moving Termination: ldeal String
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Position at rest: y=0
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Uniformly moving rigid termination for an ideal string
(tension K, mass density €) at time 0 <ty < L/c.

Driving-Point Impedance Fj/Vj:

Uoto Vo Vo
Y(to,0) = —20 = 20 =

cty ¢ VE/e

= fo = —Ksin(0) ~ —Ky'(t,0) = VKewvy 2 Ry

o If the left endpoint moves with constant velocity v
then the external applied force is fy = Ruy

o R 2 VKe2 wave impedance (for transverse waves)

e Equivalent circuit is a resistor (dashpot) R > 0

e We have the simple relation fy = Rvy only in the
absence of return waves, i.e., until time ¢ty = 2L/c.
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Waveguide “Equivalent Circuits” for the
Uniformly Moving Rigid String Termination
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a) Velocity waves  b) Force waves

e String moves with speed v, or 0 only
e String is always one or two straight segments

e “Helmholtz corner” (slope discontinuity) shuttles
back and forth at speed ¢

e String slope increases without bound
e Applied force at termination steps up to infinity
— Physical string force is labeled f(n)

— fo = Ruvy = incremental force per period
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Overview of Wave Variable Choices Specifying String State

We have thus far considered only transverse displacement

The complete state of the string is given at time n by
waves. We can also choose

. © {y(tn, @), 9t T) b=y (typical in acoustics)
e Transverse velocity v =y

° {y(tn,;L’,,,,),y(t,,,,l,xm)};};;é (typical in acoustic

o Transverse acceleration a 2 U simulations)

e Slope waves 1/ e {y"(n—m),y~ (n+m)}¥-} (what we did)
e Curvature waves y" (= c?jj for ideal string) o {yF(n—m),y " (n+m)} 2} (today)

e Any number of derivatives or integrals of o {vF(n —m),v™(n+m)}) ;) (today)

ispl ith im iti . . .
displacement ¥ with respect to time or position o Any two linearly independent variables

e Conversion between time derivatives carried out by (either physical variables or wave variables)
integrators and differentiators
e All traveling-wave variables can be computed from

any others, as long as string state is specified

a(t) a(t)

W [ ] ) 7 V(1)
G

=

d
| d] e Wave variable conversions requiring differentiation or
integration are relatively expensive since a large-order
digital filter is necessary to do it right
V(s)

AGs) Y(s) Vis) AGs)

[«
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String State, Cont’d First-Order Discrete-Time Wave-Variable
Conversion Filters

Velocity waves are a good overall choice for strings

because a) First-Order Difference b) First-Order “Leaky” Integrator

e |t is less noisy numerically to integrate for ¥ ﬁ(n) o) (1) Al
displacement than to differentiate for velocity
e Force (slope) waves = scaling of velocity waves

(as we will show shortly) ] ]
e First-order difference:
e Analogous to volume velocity in acoustic tubes

o(n) =y(n) —y(n —1)
e First-order “leaky” integrator:
g(n) =v(n)+gyn—1), g<lgrl
(loss factor g avoids DC build-up)

e b ——— o 1= g




Filter Design Approach Ideal Differentiator Frequency Response

e [deal Digital Differentiator:
H(e) ~ jw, w € [-n/T,7/T)
e [deal Digital Integrator Re

HET) ~ . w € [—n/T,x/T]

jw7 Gain
e Exact match is not possible in finite order
e Minimize ’ H(eT)y — H(eT) H where H is the

digital filter frequency response

e Discontinuity at z = —1 ensures no exact finite-order
solution

e Need oversampling factor, as in interpolator design
(e.g., 20 kHz to 22.05 kHz)
Response is unconstrained between bandlimit and
fs/2

e As before, a small increment in oversampling factor
yields a much larger decrease in required filter order
to meet a given spec
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Spatial Derivatives Wave Impedance

Slope waves are simply related to velocity waves.

We just showed

By the chain rule, Yyt = - %U+
lt é a t yl7 = %/07
y(tz) = %y( %) Define new wave variables in terms of slope waves as
— y;,(t—fv/c)+yl'(t+x/c) f+ A _Ky/+
1. 1. - _
= —i(t—a/c)+ it +v/c) [ =Ky

1 1 Note that f= are in physical units of force.
o Lt —my 4 L4 m) ote that f= are in physical units of force
c ¢ We have K
= / 1 er B %U+
+ = ,’v+ f, _ [%U,
Yy = %W Recall
o ot = — eyt K
c=1/—
vT o= cy'~ €
K 7 A
e Physical string slope = (lower rail - upper rail)/c = o Ke = R

in a velocity-wave simulation

e = v (0+m)=v"(0—m)¥m on a struck string

which is the wave impedance of the ideal string
(force/velocity for traveling waves). Thus,

[r=
=

Rv*
— Rv~




Ohm'’s Law for Traveling Waves

Force Waves

We just derived Ohm’s Law for Traveling Waves on an
Ideal String

ffn) = Ruv'(n)
' = — Rv (n)

~

L

S
|

where the velocity waves are defined in terms of
transverse string displacement by

v i

y~(n),
/T and f~ are corresponding force waves, and
R 2 VKe is the wave impedance of the string:

K
Ré\/Ke:—:ec
c

n) n)

[

v (n)

To unify vibrating strings with acoustic tubes, we choose
the force which acts to the right as our force wave
variable:

A
flt,x) = fo(t,z) =|—Ky'(t,x)
e Analogous to longitudinal pressure in acoustic tubes
e We have
K . .
flt,2) = —[ge(t — z/c) = mi(t + z/c)]
e Force waves are thus proportional to velocity waves

e Proportionality constant is called the wave impedance
(or characteristic impedance) of the string:
A K
R=vVEKe=—=c¢c
c
e Wave impedance = geometric mean of spring stiffness
and inertial mass

e Traveling force-wave components:

ffn) = Rov*(n)
f(n) = = Rv(n)
For acoustic tubes, we have
pr(n) =  Ru'(n)
p(n) = — Ru (n)

where

Ksin(B)

v ()
Displacement

0

0 Position X

e Vertical force acting to the left is
filt,z) = Ksin(0) ~ K tan(0) = K /(t, x)
e Opposing force, acting to the right, is
fr(t,r) = —Ksin(f) ~ —Ky/(t, )

(Note that a negative slope pulls “up” on the
segment to the right)

e These forces must cancel since a nonzero net force on
a massless point would produce infinite acceleration

e p(n) = right-going longitudinal pressure
e p~(n) = left-going longitudinal pressure
e u®(n) = left and right-going volume-velocity waves

e wave impedance is

R = % (Acoustic Tubes)

where

— p = mass per unit volume of air
— ¢ = sound speed in air
— A = cross-sectional area of tube

e For particle velocity, wave impedance = Ry = pc

e Particle velocity is appropriate in open air, while
volume velocity is used for acoustic tubes
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Power Waves

Physically,

Power = Work/Time
Force x Distance/Time

= Force x Velocity

Traveling power waves:
Prn) 2 [Hn)ut(n)
P(n) (

From “Ohm's law” f* = Rv" and f~ = —Rv~, we have

Pr(n) = Rlo* ()t = L2

P (n) = Rjv (n)* = [

Note that both P* and P~ are nonnegative
Summing traveling powers gives total power:
Pltas ) = P*(n = m)+ P (n+m)

If we had instead defined P~ (n) 2 f~(m)v~(n) (no
minus sign in front), then summing the traveling powers
would give net power flow.

Root-Power Waves

Energy Density Waves

Wave variables normalized to square root of power

carried:
FrEFVR f 2 VR
ot 2 vrVR - 2 v VR
= Pt = ftyt = J?+1~)+
_ R(v*)Q _ <1~)~+)2
= (f")?/R = (f7)
and _
P~ = —f v = —ftot

= R P = ()
= (fP/R=([)
e Normalized wave variables f* and % behave
physically like force and velocity waves
e Either can be squared to obtain signal power
e Dynamic range is normalized in L, sense

e Driving a normalized waveguide network with unit
variance white noise gives signal power equal to 1
throughout the network

e Time-varying wave impedances do not cause
“parametric amplification”
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Energy density = potential + kinetic energy densities:
A

1 1
Wi(t,x) = —Ky*(t,z) +=ei’(t, z)
¢ <

potential kinetic

Sampled wave energy density can be expressed as

W (tn, Tm) 2 WHn —m) + W (n +m)

where
Wh(n) = P+C(n) ! +(n:+("> —efvt(n)]’ = L/ +I((n)}
e L ) )

Total wave energy in string of length L:
L/X-1

£(t) = /  Witades 30 Wita,)X

m=0



