
MUS420 Supplement
Woodwind Tone-Hole Modeling

Julius O. Smith III (jos@ccrma.stanford.edu)
Center for Computer Research in Music and Acoustics (CCRMA)

Department of Music, Stanford University
Stanford, California 94305

February 5, 2019

Outline

• Keefe Tonehole Model

• Transmission Matrix Formulation

• Conversion to Digital Waveguide Formulation

• One-Filter Forms

• “Loaded Waveguide Junction” Interpretation

1

http://ccrma.stanford.edu/~jos
http://ccrma.stanford.edu/
http://www.stanford.edu/group/Music/
http://www.stanford.edu/


Keefe Tonehole Model
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• The clarinet tonehole model developed by Keefe
(1990) is parametrized in terms of series and shunt
impedances (resistance and reactance), as shown.

• The transmission matrix description of this two-port
is given by the product of the transmission matrices
for the series impedance Ra/2, shunt impedance Rs,
and series impedance Ra/2, respectively:
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where all quantities are written in the frequency domain
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Clarinet Tonehole Impedance Parameters

(open-hole shunt impedance) Ro
s = Rb(jkte + ξe)

(closed-hole shunt impedance) Rc
s = −jRb cot(kth)

(open-hole series impedance) Ro
a = −jRbkt

o
a

(closed-hole series impedance) Rc
a = −jRbkt

c
a

• tonehole = acoustic tube of cross-sectional area πb2

• Rb = ρc/(πb2) = wave impedance in tonehole

• ρ = density and c = sound speed as usual

• k = ω/c = 2π/λ = wavenumber
(radian spatial frequency)

• te = open-tonehole effective length (greater than
physical length due to “air piston” at tonehole exit)

• ξe = “specific resistance” of the open tonehole due to
air viscosity in and radiation from the hole

• th = closed-tonehole height, defined such that its
product times the cross-sectional area of the tonehole
exactly equals the geometric volume Vh of the closed
tonehole
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• toa and tca are the equivalent series lengths of the open
and closed tonehole, respectively:

tca =
0.47b(b/a)4

tanh(1.84th/b) + 0.62(b/a)2 + 0.64(b/a)

toa =
0.47b(b/a)4

coth(1.84th/b) + 0.62(b/a)2 + 0.64(b/a)

where a = radius of the main bore

• The closed-tonehole height Vh/(πb
2) is ≈

th = tw +
1

8
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1 + 0.172

(

b

a

)2
]

where tw = tonehole chimney height at center

Note: The specific resistance of the open tonehole, ξe,
is the only real impedance and therefore the only source
of wave energy loss at the tonehole. It is given by

ξe = 0.25(kb)2 + αth + (1/4)kdvln(2b/rc),

where rc is the radius of curvature of the tonehole, dv is
the viscous boundary layer thickness which expressible in
terms of the shear viscosity η of air as

dv =

√

2η

ρω
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and α is the real part of the propagation wavenumber (or
minus the imaginary part of complex spatial frequency k).
In the large-tube limit (i.e., when the tube radius is large
compared with the viscous boundary layer), α is given by

α =
1

2bc

[

√

2ηω

ρ
+ (γ − 1)

√

2κω

ρCp

]

where γ = 1.4 is the adiabatic gas constant for air, κ is
the thermal conductivity of air, and Cp is the specific
heat of air at constant pressure.

For air at 300◦ Kelvin (26.85◦ C), valid within ±10
degrees of that temperature:

ρ = 1.1769× 10−3(1− 0.00335∆T ) g/cm3

η = 1.846× 10−4(1 + 0.0025∆T ) g/sec/cm

γ = 1.4017(1− 0.00002∆T )

ν =
√

ηCp/κ = 0.8418(1− 0.0002∆T )

c = 3.4723× 104(1 + 0.00166∆T ) cm/sec

α =
ω

c

(

1.045

rv
+
1.080

r2v
+

0.750

r3v

)

(valid for rv > 2)

• rv = b
√

ρω
η =

√
2 b
dv

can be interpreted as
√
2 times

the ratio of the tonehole radius b to the viscous
boundary layer thickness dv
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• The constant ν2 is referred to as the Prandtl number,

• η is the shear viscosity coefficient

• rv is greater than 8 under practical conditions in
musical acoustics, ⇒ sufficient to keep only the first
and second-order terms in the expression above for α.

The open-hole effective length te, assuming no pad above
the hole, is

te =
(1/k) tan(kt) + b[1.40− 0.58(b/a)2]

1− 0.61kb tan(kt)
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Digital Waveguide Tonehole Formulation
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For implementation in a digital waveguide model, the
lumped shunt and series impedances must be converted
to scattering parameters:
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Derivation

From Keefe’s transmission-matrix model, we have
[

P1

U1

]

=

[

1 + Ra
2Rs

Ra[1 +
Ra
4Rs

]
1
Rs

1 + Ra
2Rs

]

[

P2
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]

• Substitute k = ω/c in the impedance values
measured by Keefe to convert spatial frequency to
temporal frequency

• Substitute

Pi = P+
i + P−

i , Ui =
P+
i − P−

i

R0
, i = 1, 2

to convert physical variables to wave variables

•
(

R0 =
ρc
πa2

is the bore wave impedance
)

• Finally, solve for the outgoing waves P−
1 , P

−
2 in terms

of the incoming waves P+
1 , P

+
2
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Mathematica code

Clear["t*", "p*", "u*", "r*"]

transmissionMatrix = {{t11, t12}, {t21, t22}};

leftPort = {{p2p+p2m}, {(p2p-p2m)/r2}};

rightPort = {{p1p+p1m}, {(p1p-p1m)/r1}};

Format[t11, TeXForm] := "{T_{11}}"

Format[p1p, TeXForm] := "{P_1^+}"

... (etc. for all variables) ...

TeXForm[Simplify[Solve[leftPort ==

transmissionMatrix . rightPort,

{p1m, p2p}]]]

P−
1 =

2P−
2
R1 − P+

1
R1T11 − P+

1
T12 + P+

1
R1R2T21 + P+

1
R2T22

R1T11 − T12 −R1R2T21 +R2T22,

P+

2 =
P−
2
R1T11 − P−

2
T12 + P−

2
R1R2T21 − 2P+

1
R2T12T21 − P−

2
R2T22 + 2P+

1
R2T11T22

R1T11 − T12 −R1R2T21 +R2T22

Substituting relevant values for Keefe’s tonehole model,
we obtain

[

P−

1

P+

2

]

=

[

S T

T S

] [

P+

1

P−

2

]

=
1

(2R0 +Ra)(2R0 +Ra + 4Rs)

[

4RaRs +R2
a
− 4R2

0 8R0Rs

8R0Rs 4RaRs +R2
a
− 4R2

0

] [

P+

1

P−

2

]
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Thus,

S(ω) =
4RaRs +R2

a − 4R2
0

(2R0 +Ra)(2R0 +Ra + 4Rs)
≈ − R0

R0 + 2Rs

is the reflectance of the tonehole (the same from either
direction), and the transmittance is given by

T (ω) =
8R0Rs

(2R0 +Ra)(2R0 +Ra + 4Rs)
≈ 2Rs

R0 + 2Rs

• Tonehole reflectance and transmittance are the same
in either direction

• The notation “S” for reflectance is chosen because
every reflectance is a Schur function (stable and not
exceeding unit magnitude on the unit circle in the z
plane)

• The approximate forms are obtained by neglecting the
negative series inertance Ra which serves to adjust
the effective length of the bore, and which therefore
can be implemented elsewhere in the interpolated
delay-line calculation as discussed further below

• The open and closed tonehole cases are obtained by
substituting {Ra = Ro

a, Rs = Ro
s} and

{Ra = Rc
a, Rs = Rc

s}, respectively

10



Open and Closed Tonehole Reflectance:
Measured versus Second-Order Digital

Filter Approximation
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Impulse Response of Several Toneholes
in a Clarinet Bore: Measured versus

Digital Waveguide Model
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One-Filter Forms

In a manner analogous to converting the four-multiply
Kelly-Lochbaum (KL) scattering junction into a
one-multiply form, we may pursue a “one-filter” form of
the waveguide tonehole model.

• The series inertance gives some initial trouble, since

[1 + S(ω)]− T (ω) =
2Ra

2R0 +Ra

∆
= L(ω)

instead of zero as in the KL junction.

• In the scattering formulas for the general loaded
waveguide junction, the reflectance seen on any
branch is always the transmittance from that branch
to any other branch minus 1. I.e., if αi denotes the
transmittance from branch i to all other branches
meeting at the junction, then αi − 1 is the reflectance
seen on branch i.

• By factoring out the common term αi, one-multiply
two-port scattering junctions are found.
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Substituting
T = 1 + S − L

into the basic scattering relations, and factoring out S,
we obtain, in the frequency domain,

P−
1 (ω) = SP+

1 + TP+
2

= SP+
1 + [1 + S − L]P+

2

= S[P+
1 + P+

2 ] + [1− L]P+
2

∆
= S[P+

1 + P+
2 ] + AP+

2

and, similarly,

P−
2 (ω) = S[P+

1 + P+
2 ] + AP+

1

The resulting tonehole implementation is shown below:
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( )P −
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( )A ω
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In the same way, an alternate form is obtained from the
substitution

S = T − 1 + L

which yields the “shared transmittance” form:

P−
1 = T [P+

1 + P+
2 ]− AP+

1

P−
2 = T [P+

1 + P+
2 ]− AP+

2

( )P −
1

ω

( )P −
2

ω

( )P +
2

ω

( )P +
1

ω

( )T ω( )ω− A ( )ω− A
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• Since L(ω) ≈ 0, it can be neglected to first order,
and A(ω) ≈ 1, reducing both of the above forms to
an approximate “one-filter” tonehole implementation.

• Since Ra = −jRbωta/c is a pure negative reactance,
we have

A(ω) = 1− L(ω) =
R0 −Ra/2

R0 +Ra/2
=

p+ jω

p− jω
, p =

R0c

Rbta

• In this form, it is clear that A(ω) is a first-order
allpass filter with a single pole-zero pair near infinity.

Unfortunately, the pole is in the right-half-plane and
hence unstable. We cannot therefore implement it as
shown.
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Using elementary manipulations, the unstable allpasses
can be moved to the configuration shown below:

( )A ω

( )
( )A

S

ω
ω

( )A ω

( )P +
1

ω ( )P −
2

ω

( )P −
1

ω ( )P +
2

ω

Notes:

• T (ω)/A(ω) is stable whenever T is stable.

• The unstable allpasses now operate only on the two
incoming wave variables, which implies they can be
implemented implicitly by slightly reducing the
(interpolated) delay-lines leading to the junction from
either side.

• The tonehole requires only one filter S/A or T/A.
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We now see precisely how the negative series inertance
Ra provides a negative, frequency-dependent, length

correction for the bore. The phase delay of A(ω) can be
computed as

DA(ω)
∆
= −∠A(ω)

ω
= −2 tan−1(ω/p) = −2 tan−1(ktaRb/R0)

• Negative delay correction goes to zero with any
frequency k = ω/c, series tonehole length ta, tonehole
radius Rb, or main bore admittance Γ0 = 1/R0.

• In practice, it is common to combine all delay
corrections into a single “tuning allpass filter” for the
whole bore

• Whenever the desired allpass delay goes negative, we
simply add a sample of delay to the desired allpass
phase-delay and subtract it from the nearest delay.

• In other words, negative delays have to be “pulled
out” of the allpass and used to shorten an adjacent
interpolated delay line. Such delay lines are normally
available in practical modeling situations.

18



The Clarinet Tonehole as a Two-Port
Loaded Junction

It seems reasonable to expect that the tonehole should be
representable as a load along a waveguide bore model,
thus creating a loaded two-port junction with two
identical bore ports on either side of the tonehole. From
the general relations for the loaded parallel pressure-wave
junction, in the two-port case with R1 = R2 = R0, we
have

PJ(s) = αP+

1 + αP+

2 , α = 2Γ0/[GJ(s) + 2Γ0]

P−
1 (s) = PJ(s)− P+

1 = (α− 1)P+

1 + αP+

2 = α(P+

1 + P+

2 )− P+

1

P−
2 (s) = PJ(s)− P+

2 = αP+

1 + (α− 1)P+

2 = α(P+

1 + P+

2 )− P+

2

• The general loaded two-port junction can be
implemented in “one-filter shared-transmittance
form” as shown above with A(ω) = 1 (L(ω) = 0) and

T (ω) = α =
2Γ0

2Γ0 +GJ(s)
=

2RJ(s)

2RJ(s) +R0

• The simplified Keefe tonehole model (negative
inertance removed, i.e., Ra = 0), is equivalent to a
loaded two-port waveguide junction with the two-port
load impedance set to the tonehole shunt impedance
RJ = Rs.

19



• Each series impedance Ra/2 in the split-T model of
Keefe can be modeled as a series waveguide junction
with a load of Ra/2:

• Set the transmission matrix parameters to the values
T11 = T22 = 1, T12 = Ra/2, and T21 = 0 to get

P−
1 = (1− α)P+

1 + αP−
2

P+
2 = αP+

1 + (1− α)P−
2

where α = 2R0/(2R0 +Ra/2) is the alpha parameter
for a series loaded waveguide junction involving two
impedance R0 waveguides joined in series with each
other and with a load impedance of Ra/2.

• Switch to the more general convention in which the
“+” superscript denotes waves traveling into a
junction of any number of waveguides. This
exchanges “+” with “−” at port 2 to yield

P−
1 = (1− α)P+

1 + αP+
2

P−
2 = αP+

1 + (1− α)P+
2

• Convert pressure to velocity using P+
i = R0U

+
i and

P−
i = −R0U

−
i to obtain

U−
1 = (α− 1)U+

1 − αU+
2

U−
2 = −αU+

1 + (α− 1)U+
2
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• Finally, toggle the reference direction of port 2 (the
“current” arrow for u2 on port 2 in Keefe’s split-T
model) so that velocity is positive flowing into the
junction on both ports (which is the convention
typically followed in circuit theory). This amounts to
negating U±

2 , giving

U−
1 = UJ − U+

1

U−
2 = UJ − U+

2

where UJ
∆
= (αU+

1 + αU+
2 ).

• This is the canonical form of the two-port series
scattering junction.
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