Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Parabolic Interpolation


\begin{psfrags}\psfrag{a} []{ \large$ \alpha $}\psfrag{b} []{ \large$ \beta $}\psfrag{g} []{ \large$ \gamma $\ }\begin{center}
\epsfig{file=eps/parabola.eps,width=6in} \\
\end{center} % was epsfbox
\end{psfrags}

Assume a parabola centered at $ p$ :

$\displaystyle y(x) \mathrel{\stackrel{\Delta}{=}}a(x-p)^2+b
$

Evaluating at three adjacent bins about the peak, we have

\begin{eqnarray*}
y(-1) &=& \alpha \\
y(0) &=& \beta \quad \mbox{(peak)}\\
y(1) &=& \gamma \\
\end{eqnarray*}


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[Comment on this page via email]

``Lecture 4: Spectrum Analysis of Sinusoids'', by Julius O. Smith III, (From Lecture Overheads, Music 421).
Copyright © 2020-06-27 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]