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Wave Scattering at an Impedance
Discontinuity

A change in wave impedance causes lossless signal
scattering :

• A traveling wave impinging on an impedance

discontinuity will partially reflect from and partially
transmit through the discontinuity

• Pressure will be continuous everywhere

• Velocity in = velocity out (junction has no state)

• Signal power (energy) is conserved
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Plane-Wave Scattering

Consider a plane-wave p+1 propagating from wave
impedance R1 into a new wave impedance R2:

p+1

p−1

p+2

R2R1

Physical constraints:

p+1 + p−1 = p+2 (pressure continuous across junction)

v+1 + v−1 = v+2 (velocity in = velocity out)

Ohm’s Law relations:

p+i = Riv
+
i

p−i = − Riv
−
i
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Scattering Solution

Let

pj
∆
= p+1 + p−1 = p+2 (pressure at junction)

vj
∆
= v+1 + v−1 = v+2 (velocity at junction)

Then we can write

p+1 + p−1 = p+2 = pj

⇒ R1v
+
1 −R1v

−
1 = R2v

+
2 = R2vj

⇒ R1v
+
1 −R1(vj − v+1 ) = R2vj

⇒ 2R1v
+
1 −R1vj = R2vj

⇒ vj =
2R1

R1 +R2

v+1

We have solved for the junction velocity vj = v+2 . The
transmitted pressure is then p+2 = R2v

+
2 = R2vj.

Since vj = v+1 + v−1 , the reflected velocity is simply

v−1 = vj − v+1 =

[
2R1

R1 +R2

− 1

]

v+1 =
R1 −R2

R1 +R2

v+1

Thus, we have solved for the transmitted and reflected
velocity waves given the incident wave and the two
impedances.
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Using the Ohm’s law relations, the pressure waves follow:

p+2 = R2v
+
2 = R2vj =

2R2

R1 +R2

p+1

p−1 = −R1v
−
1 =

R2 −R1

R1 +R2

p+1

Define

k =
R2 −R1

R1 +R2

=
Impedance Step

Impedance Sum

Then we get the following scattering relations in terms of
k for pressure waves:

p+2 = (1 + k)p+1
p−1 = k p+1

Signal Flow Graph:

1 + k

kR1 R2

1− k

R2R1

v+1

v−1

v+2

−k

p+1

p−1

p+2

Signal power conserved (left-going power negated):

p+1 v
+
1 = p+2 v

+
2 + (−p−1 v

−
1 )
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Superposition of Bidirectional Scattering

k

1 + k

1− k

−k

p−1 p−2

p+1

R2

Delay Delay

Delay Delay

p+2

R1

• Stepping from R2 to R1 negates k
∆
=

R2 −R1

R2 +R1

• Transmission is 1 + reflection in either direction

• “Kelly-Lochbaum” scattering junction

Special Cases:

• R2 = ∞ ⇒ k = 1 (e.g., rigid wall reflection)

• R2 = 0 ⇒ k = −1 (e.g., open-ended tube)

• R2 = R1 ⇒ k = 0 (no reflection)
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Longitudinal String Waves

• Longitudinal string waves compress and stretch along
the string x axis

• String may have a nonzero diameter = “stiff string”
or “rod”

• In solids, force-density waves are called stress waves

a)

b)
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Longitudinal force waves in an ideal rod
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Longitudinal Scattering in Strings

a)

b)
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1

( )tf −
1

( )tf −
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A waveguide section between two partial sections

a) Physical picture indicating traveling waves in a
continuous medium with wave impedance changing
from R0 to R1 to R2 along the horizontal axis,
resulting in signal scattering (power-conserving
transmission and reflection)

b) Digital simulation diagram

Such a rod might be constructed, for example, using
three different materials having three different densities
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Longitudinal Scattering in Strings, Notes

• As before, velocity vi = v+i + v−i is defined as positive
to the right

• f+
i = right-going traveling-wave component of the
stress, positive when the rod is locally compressed

• The stress-wave reflection coefficients are

ri =
Ri −Ri−1

Ri +Ri−1

to the right, with corresponding transmission
coefficients 1 + ri to the right

• To the left, the impedance step negates, so the
reflection coefficients negate for waves propagating to
the left

• Wave impedance is now Ri =
√
Eρ

where

ρ = mass density

E = Young’s modulus of the medium

= stress over strain

• strain = relative displacement δy/y

• To minimize the numerical dynamic range, velocity
waves may be chosen instead when Ri > 1
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The Loaded N-Port Scattering Junction

Four Ideal Strings Intersecting at a Load

. . .

. . .

( )sV −
1

( )sV −
2

( )sV +
2

( )sV +
1

. . .

. . .

( )sV +
3

( )sV −
3

( )sV −
4

( )sV +
4

( ) ( ) ( ) ( ) ( )sVsVsVsVsVJ ==== 4321

( )sFJ

( )sRJ

( )
( )

=
sR

sF

J

J

Series junction ⇔ common velocity, forces sum to 0 :

V1(s) = V2(s) = · · · = VN(s)
∆
= VJ(s)

F1(s) + F2(s) + · · · + FN(s) = VJ(s)RJ(s)
∆
= FJ(s)
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Computing common velocity at junction:

RJVJ = FJ =

N∑

i=1

Fi =

N∑

i=1

(F+
i + F−

i )

=

N∑

i=1

(RiV
+
i −Ri V −

i︸︷︷︸

VJ−V +
i

)

=

N∑

i=1

(2RiV
+
i −RiVJ)

⇒

VJ = 2

(

RJ +

N∑

i=1

Ri

)−1 N∑

i=1

RiV
+
i

or

VJ(s) =

N∑

i=1

Ai(s)V
+
i (s)

where

Ai(s)
∆
=

2Ri

RJ(s) +R1 + · · · +RN

(generalized “alpha parameter”, cf. Wave Digital Filters)

Finally, by continuity, VJ = Vi = V +
i + V −

i ⇒

V −
i (s) = VJ(s)− V +

i (s)
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Solution Properties

We determined that

VJ(s) =

N∑

i=1

Ai(s)V
+
i (s) (junction velocity)

V −
i (s) = VJ(s)− V +

i (s) (outgoing velocity waves)

where

Ai(s)
∆
=

2Ri

RJ(s) +R1 + · · · +RN

• Lossless only when Re{RJ(jω)} ≡ 0

• Memoryless only when Im{RJ(jω)} ≡ 0

• Dynamic load takes all scattering coefficients into
Laplace domain

– Order of each “scattering-filter” equals load order

– Normally one filter can serve entire junction

• Junction load equivalent to an N + 1st waveguide
(with no input) having (generalized) wave impedance
given by load impedance RJ(s)
(consider “perfect termination” of a transmission line
using a resistor equal in value to line impedance)
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Alpha Parameters

Recall N velocity waveguides meeting at a series junction:

VJ(s) =

N∑

i=1

Ai(s)V
+
i (s) (junction velocity)

V −
i (s) = VJ(s)− V +

i (s) (outgoing velocity waves)

where

Ai(s)
∆
=

2Ri

RJ(s) +R1 + · · · +RN

In the lossless (unloaded) case, RJ(s) = 0, and so the
alpha parameters are real and positive and add up to 2:

αi =
2Ri

R1 + · · · +RN

I.e.,
0 ≤ αi ≤ 2

and
N∑

i=1

αi = 2

Also, we no longer have to be in the Laplace domain
(RJ = 0)
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Time-Domain Lossless Series Scattering in terms

of Alpha Parameters

vJ(t) =

N∑

i=1

αiv
+
i (t)

v−i (t) = vJ(t)− v+i (t)

Alpha parameters conveniently parametrize lossless
scattering junctions:

• Explicit coefficients of incoming traveling waves for
computing junction velocity

• Losslessness assured when alpha parameters are
nonnegative and sum to 2

• When alpha parameters sum to less than 2, there is
conceptually a “resistive loss” at the junction

In the lossless, equal-impedance case, Ri = R, ∀i ⇒

αi =
2

N

When N is a power of two, no multiplies are needed
(multiply-free reverberators, waveguide meshes, etc., are
based on this)
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Reflection-Free Ports

To suppress series-junction reflections on one of the
strings, say string 1, then we set its wave impedance to
the series combination (i.e., sum) of the other wave
impedances meeting at the series junction:

R1 = R2 +R3 + · · · +RN

• This choice of R1 matches the impedance seen from
string 1 when entering junction

• Such matching eliminates an impedance step seen by
waves traveling from string 1 into all of the other
strings

In this case, the first alpha parameter becomes

α1 =
2R1

R1 +R2 + · · · +RN
=

2R1

R1 +R1

= 1

and the remaining alpha parameters can be expressed as

αi =
2Ri

2R1

=
Ri

R1

, i = 1, 2, . . . , N

and the sum of the N − 1 remaining alpha parameters is
therefore 1 since there is no junction load.
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Normalizing by the Wave Impedance at a

Reflection-Free Port

Often we only care about the signal scattering and not
the specific impedance values. In that case it is
convenient to divide all impedances at the junction by
R1, defining R̃i

∆
= Ri/R1, so that

R̃1 = 1

R̃i ∈ [0, 1], i = 2, . . . , N
N∑

i=2

R̃i = 1

α1 = 1

αi = R̃i
N∑

i=2

αi = 1

String 1 is said to intersect with the other strings at a
reflection-free port. For N > 2, the other strings are
attached to the junction at reflecting ports.
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Normalized Scattering Junctions

( )tki ( )− tki

( )
�

1 − tk2
i

( )
�

1 − tk2
i

( )tf̃
+
i

( )tf̃
−
i( )Ttf̃ −

−
i 1 +

( )Ttf̃ −
+
i 1 −

The normalized scattering junction

• Recall normalized waves:

f̃+
i

∆
= f+

i /
√

Ri ṽ+i
∆
= v+i ·

√

Ri

• Converting scattering to normalized waves f̃± gives

f̃+
i (t) =

√

1− k2i (t)f̃
+
i−1(t− T )− ki(t)f̃

−
i (t)

f̃−
i−1(t + T ) = ki(t)f̃

+
i−1(t− T ) +

√

1− k2i (t)f̃
−
i (t)

• Better term = “Normalized-wave scattering junction”

• Normalized junction is equivalent to a 2D rotation:

f̃+
i (t) = cos(θi)f̃

+
i−1(t− T )− sin(θi)f̃

−
i (t)

f̃−
i−1(t + T ) = sin(θi)f̃

+
i−1(t− T ) + cos(θi)f̃

−
i (t)
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Normalized Scattering Junction

( )tki ( )− tki

( )
�
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( )tf̃
+
i
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−
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−
i 1 +
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+
i 1 −

The normalized scattering junction

• Four multiplies and two additions required

• Using transformer normalization, we can obtain
three-multiply, three-add variations:

( )tki
+

−

( )Ttf −
+
i 1 −

( )Ttf −
−
i 1 + ( )tf −

i

( )tf +
i

( )1 tgi

( ) ( )
( )

�
tk

tk
tg

i

i
i +

−=
1

1

R −i 1Ri Ri
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The Digital Waveguide Transformer

The ideal transformer

• scales up pressure and scales down velocity by the
same factor

• steps wave impedance from R1 to R2 (and vice versa)
without reflections

• conserves power

• No scattering reflections generated

• Physical in principle, but not realizable
There are engineering approximations, however:

– Conical acoustic tube

– Horn loudspeakers

– Quarter-wave microwave transformers
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Transformer Scattering Formulas

General Two-Port:

+

-

+

-

p1 p2u1 u2RR 21 :

The general 2-port.

Power conservation:

p1u1 = −p2u2

⇔ (p+1 + p−1 )

(
p+1 − p−1

R1

)

= −(p+2 + p−2 )

(
p+2 − p−2

R2

)

Non-reflecting:

p−1 = g1p
+
2

p−2 = g2p
+
1

for some constants g1, g2

Solution:

p−1 =

√

R1

R2

p+2
∆
=

1

g
p+2

p−2 =

√

R2

R1

p+1
∆
= gp+1

20



where g
∆
= transformer “turns ratio”

Wave-flow diagram:

p p

pp

+ -

- +

1 2

1 2

g

1/g

The ideal 2-port transformer
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Three-Multiply Transformer-Normalized

Scattering Junction

( )tki
+

−

( )Ttf −
+
i 1 −

( )Ttf −
−
i 1 + ( )tf −

i

( )tf +
i

( )1 tgi

( ) ( )
( )

�
tk

tk
tg

i

i
i +

−=
1

1

R −i 1Ri Ri

• Using transformers, all waveguides are normalized to
the same impedance, Ri ≡ 1

• gi and/or 1/gi may have a large dynamic range

• While transformer-normalization trades a multiply for
an add, up to 50% more bits needed in junction
adders (see text)
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Principles of Passive Construction

We can state the following general principles for
passive signal processing :

• Confine all nonlinear operations to physically

meaningful wave variables

• Signal power = square of physical variable times
admittance or impedance

• Passivity assured if all effective gains less than 1

• Passive rounding:

– Apply to extended-precision intermediate result

– Magnitude truncation (“rounding toward zero”)

– Error power feedback

• Limit cycles impossible in passive systems

• Overflow oscillations impossible in passive systems

• Energy in ideal implementation = Lyapunov function

bounding energy in the finite-precision implementation
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Structural Losslessness - Two-Port Case

• One-multiply scattering junctions are structurally
lossless: Only one parameter for which all in-range
quantizations correspond to lossless scattering

– Reflection coefficient ki ∈ [−1, 1]

– Alpha parameter αi ∈ [0, 2]

• Not all normalized scattering junctions are structurally
lossless

– The four-multiply normalized junction has two

parameters, si
∆
= ki and ci

∆
=
√

1− k2i , which may
not satisfy s2i + c2i = 1 after quantization

– The three-multiply normalized junction requires
non-amplifying rounding on the product of the
quantized transformer coefficients (gi) · (1/gi) ≤ 1
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Net Signal Power at a Two-Port Scattering

Junction

A junction is passive if the power flowing away from it
does not exceed the power flowing into it

[f+
i (t)]

2

Ri(t)
+

[f−
i−1(t + T )]2

Ri−1(t)
︸ ︷︷ ︸

outgoing power

≤ [f+
i−1(t− T )]2

Ri−1(t)
+
[f−

i (t)]
2

Ri(t)
︸ ︷︷ ︸

incoming power

Let f̂ denote the finite-precision version of f . Then a
sufficient condition for junction passivity is

∣
∣
∣f̂+

i (t)
∣
∣
∣ ≤

∣
∣f+

i (t)
∣
∣

∣
∣
∣f̂−

i−1(t + T )
∣
∣
∣ ≤

∣
∣f−

i−1(t + T )
∣
∣
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Digital Waveguide Mesh

2D mesh

• Rectilinear: 4-port junctions (no multiplies)

• Hexagonal (“chicken wire”): 3-port junctions

• Triangular: 6-port junctions (staggered rect. w.
diagonals)

3D mesh

• Rectilinear: 6-port junctions

• Diamond crystal lattice (tetrahedral mesh): 4-port
junctions (no multiplies)
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2D Rectangular Mesh
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Scattering

Junction

z−1

z−1

z−1

z−1
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At each four-port scattering junction:

VJ =
in1 + in2 + in3 + in4

2
outk = VJ − ink, k = 1, 2, 3, 4
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2D Triangular Mesh over Staggered Grid
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2D Mesh and the Wave Equation

l

vlm(n)

vl,m−1(n)

vl+1,m(n)vl−1,m(n)

vl,m+1(n)

m

v
−w

lm

v
−s

lmv
+s

lm

v
+n

lm

v
−e

lm

v
+e

lm

to vl+1,mto vl−1,m

to vl,m−1

to vl,m+1

v
−n

lm

v
+w

lm

vl,m

Junction velocity vlm at time n:

vlm(n) =
1

2

[
v+n

lm (n) + v+e

lm (n) + v+s

lm(n) + v+w

lm (n)
]
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Junction Velocity

Junction velocity vlm at time n:

vlm(n) =
1

2

[
v+n

lm (n) + v+e

lm (n) + v+s

lm(n) + v+w

lm (n)
]

Equivalent Finite Difference Scheme

We have

vlm(n+1) =
1

2

[

v−s

l,m+1
(n) + v−w

l+1,m(n) + v−n

l,m−1
(n) + v−e

l−1,m(n)
]

vlm(n−1) =
1

2

[

v+s

l,m+1
(n) + v+w

l+1,m(n) + v+n

l,m−1
(n) + v+e

l−1,m(n)
]

Adding gives a finite difference equation satisfied by the
mesh

vlm(n + 1) + vlm(n− 1) =
vl,m+1 + vl+1,m + vl,m−1 + vl−1,m

2

• Physical variables only (no traveling-wave
components)

• Omitted time arguments are all ’(n)’

Subtracting 2vlm(n) from both sides yields

vlm(n + 1)− 2vlm(n) + vlm(n− 1)

=
1

2
{[vl,m+1(n)− 2vlm(n) + vl,m−1(n)]

+ [vl+1,m(n)− 2vlm(n) + vl−1,m(n)]}
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or, assuming X = Y (“square hole” case),

vlm(n + 1)− 2vlm(n) + vlm(n− 1)

T 2

=
X2

2T 2

[
vl,m+1(n)− 2vlm(n) + vl,m−1(n)

Y 2

+
vl+1,m(n)− 2vlm(n) + vl−1,m(n)

X2

]

.

In the limit,

∂2v(x, y, t)

∂t2
=

X2

2T 2

[
∂2v(x, y, t)

∂x2
+

∂2v(x, y, t)

∂y2

]

i.e., the ideal 2D wave equation

∂2v

∂t2
= c2

[
∂2v

∂x2
+

∂2v

∂y2

]

∆
= c2∇2v

where ∇2 denotes the Laplacian, and

c =
1√
2

X

T
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Traveling Waves on the 2D Square-Holed Mesh

We found that the 2D digital waveguide mesh satisfies a
finite difference scheme which converges to the ideal 2D
wave equation with wave propagation speed

c =
1√
2

X

T
=

√
2X

2T

• Every two time steps (2T sec) corresponds to a spatial
step of

√
2X meters — This is the distance from one

diagonal to the next on the square-holed mesh

• Diagonal plane-wave propagation is exact

• Consider Huygens’ principle along a mesh diagonal

• The x and y directions are highly dispersive:

– High frequencies travel slower than low frequencies

– Dispersion depends on frequency and direction

• The triangular mesh is much closer to isotropic :

– Dispersion more nearly the same in all directions

• Frequency-dependent dispersion can be addressed
using frequency warping

• By construction, there is no attenuation at any
frequency in any direction
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