MUS420 Lecture
 Acoustic Scattering at Impedance Changes

Julius O. Smith III (jos@ccrma.stanford.edu)
Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music, Stanford University
Stanford, California 94305

June 27, 2020

Outline

- Plane-Wave Scattering
- The Loaded N-Way Junction
- Lossless Scattering
- Normalized Scattering Junctions
- Transformer-Normalized Scattering Junctions
- Junction Passivity
- The Digital Waveguide Mesh

Wave Scattering at an Impedance Discontinuity

A change in wave impedance causes lossless signal scattering:

- A traveling wave impinging on an impedance discontinuity will partially reflect from and partially transmit through the discontinuity
- Pressure will be continuous everywhere
- Velocity in $=$ velocity out (junction has no state)
- Signal power (energy) is conserved

Plane-Wave Scattering

Consider a plane-wave p_{1}^{+}propagating from wave impedance R_{1} into a new wave impedance R_{2} :

Physical constraints:

$$
\begin{aligned}
& p_{1}^{+}+p_{1}^{-}=p_{2}^{+} \quad \text { (pressure continuous across junction) } \\
& \left.v_{1}^{+}+v_{1}^{-}=v_{2}^{+} \quad \text { (velocity in }=\text { velocity out }\right)
\end{aligned}
$$

Ohm's Law relations:

$$
\begin{aligned}
& p_{i}^{+}=R_{i} v_{i}^{+} \\
& p_{i}^{-}=- \\
& R_{i} v_{i}^{-}
\end{aligned}
$$

Scattering Solution

Let

$$
\begin{array}{ll}
p_{j} \triangleq p_{1}^{+}+p_{1}^{-}=p_{2}^{+} & \text {(pressure at junction) } \\
v_{j} \triangleq v_{1}^{+}+v_{1}^{-}=v_{2}^{+} & \text {(velocity at junction) }
\end{array}
$$

Then we can write

$$
\begin{gathered}
p_{1}^{+}+p_{1}^{-}=p_{2}^{+}=p_{j} \\
\Rightarrow R_{1} v_{1}^{+}-R_{1} v_{1}^{-}=R_{2} v_{2}^{+}=R_{2} v_{j} \\
\Rightarrow R_{1} v_{1}^{+}-R_{1}\left(v_{j}-v_{1}^{+}\right)=R_{2} v_{j} \\
\Rightarrow 2 R_{1} v_{1}^{+}-R_{1} v_{j}=R_{2} v_{j} \\
\Rightarrow v_{j}=\frac{2 R_{1}}{R_{1}+R_{2}} v_{1}^{+}
\end{gathered}
$$

We have solved for the junction velocity $v_{j}=v_{2}^{+}$. The transmitted pressure is then $p_{2}^{+}=R_{2} v_{2}^{+}=R_{2} v_{j}$.

Since $v_{j}=v_{1}^{+}+v_{1}^{-}$, the reflected velocity is simply

$$
v_{1}^{-}=v_{j}-v_{1}^{+}=\left[\frac{2 R_{1}}{R_{1}+R_{2}}-1\right] v_{1}^{+}=\frac{R_{1}-R_{2}}{R_{1}+R_{2}} v_{1}^{+}
$$

Thus, we have solved for the transmitted and reflected velocity waves given the incident wave and the two impedances.

Using the Ohm's law relations, the pressure waves follow:

$$
\begin{aligned}
& p_{2}^{+}=R_{2} v_{2}^{+}=R_{2} v_{j}=\frac{2 R_{2}}{R_{1}+R_{2}} p_{1}^{+} \\
& p_{1}^{-}=-R_{1} v_{1}^{-}=\frac{R_{2}-R_{1}}{R_{1}+R_{2}} p_{1}^{+}
\end{aligned}
$$

Define

$$
k=\frac{R_{2}-R_{1}}{R_{1}+R_{2}}=\frac{\text { Impedance Step }}{\text { Impedance Sum }}
$$

Then we get the following scattering relations in terms of k for pressure waves:

$$
\begin{aligned}
& p_{2}^{+}=(1+k) p_{1}^{+} \\
& p_{1}^{-}=k p_{1}^{+}
\end{aligned}
$$

Signal Flow Graph:

R_{2}

Signal power conserved (left-going power negated):

$$
p_{1}^{+} v_{1}^{+}=p_{2}^{+} v_{2}^{+}+\left(-p_{1}^{-} v_{1}^{-}\right)
$$

Superposition of Bidirectional Scattering

- Stepping from R_{2} to R_{1} negates $k \triangleq \frac{R_{2}-R_{1}}{R_{2}+R_{1}}$
- Transmission is $1+$ reflection in either direction
- "Kelly-Lochbaum" scattering junction

Special Cases:

- $R_{2}=\infty \Rightarrow k=1 \quad$ (e.g., rigid wall reflection)
- $R_{2}=0 \Rightarrow k=-1 \quad$ (e.g., open-ended tube)
- $R_{2}=R_{1} \Rightarrow k=0 \quad$ (no reflection)

Longitudinal String Waves

- Longitudinal string waves compress and stretch along the string x axis
- String may have a nonzero diameter = "stiff string" or "rod"
- In solids, force-density waves are called stress waves
a)

Longitudinal force waves in an ideal rod

Longitudinal Scattering in Strings

a)

A waveguide section between two partial sections
a) Physical picture indicating traveling waves in a continuous medium with wave impedance changing from R_{0} to R_{1} to R_{2} along the horizontal axis, resulting in signal scattering (power-conserving transmission and reflection)
b) Digital simulation diagram

Such a rod might be constructed, for example, using three different materials having three different densities

Longitudinal Scattering in Strings, Notes

- As before, velocity $v_{i}=v_{i}^{+}+v_{i}^{-}$is defined as positive to the right
- $f_{i}^{+}=$right-going traveling-wave component of the stress, positive when the rod is locally compressed
- The stress-wave reflection coefficients are

$$
r_{i}=\frac{R_{i}-R_{i-1}}{R_{i}+R_{i-1}}
$$

to the right, with corresponding transmission coefficients $1+r_{i}$ to the right

- To the left, the impedance step negates, so the reflection coefficients negate for waves propagating to the left
- Wave impedance is now $R_{i}=\sqrt{E \rho}$ where

$$
\begin{aligned}
\rho & =\text { mass density } \\
E & =\text { Young's modulus of the medium } \\
& =\text { stress over strain }
\end{aligned}
$$

- strain $=$ relative displacement $\delta y / y$
- To minimize the numerical dynamic range, velocity waves may be chosen instead when $R_{i}>1$

The Loaded N-Port Scattering Junction

Four Ideal Strings Intersecting at a Load

Series junction \Leftrightarrow common velocity, forces sum to 0 :

$$
\begin{aligned}
& V_{1}(s)=V_{2}(s)=\cdots=V_{N}(s) \triangleq V_{J}(s) \\
& F_{1}(s)+F_{2}(s)+\cdots+F_{N}(s)=V_{J}(s) R_{J}(s) \triangleq F_{J}(s)
\end{aligned}
$$

Computing common velocity at junction:

$$
\begin{aligned}
R_{J} V_{J}=F_{J} & =\sum_{i=1}^{N} F_{i}=\sum_{i=1}^{N}\left(F_{i}^{+}+F_{i}^{-}\right) \\
& =\sum_{i=1}^{N}(R_{i} V_{i}^{+}-R_{i} \underbrace{V_{i}^{-}}_{V_{J}-V_{i}^{+}}) \\
& =\sum_{i=1}^{N}\left(2 R_{i} V_{i}^{+}-R_{i} V_{J}\right) \\
V_{J} & =2\left(R_{J}+\sum_{i=1}^{N} R_{i}\right)^{-1} \sum_{i=1}^{N} R_{i} V_{i}^{+}
\end{aligned}
$$

\Rightarrow
or

$$
V_{J}(s)=\sum_{i=1}^{N} \mathcal{A}_{i}(s) V_{i}^{+}(s)
$$

where

$$
\mathcal{A}_{i}(s) \triangleq \frac{2 R_{i}}{R_{J}(s)+R_{1}+\cdots+R_{N}}
$$

(generalized "alpha parameter", cf. Wave Digital Filters)
Finally, by continuity, $V_{J}=V_{i}=V_{i}^{+}+V_{i}^{-} \Rightarrow$

$$
V_{i}^{-}(s)=V_{J}(s)-V_{i}^{+}(s)
$$

Solution Properties

We determined that

$$
\begin{aligned}
V_{J}(s) & =\sum_{i=1}^{N} \mathcal{A}_{i}(s) V_{i}^{+}(s) \\
V_{i}^{-}(s) & =V_{J}(s)-V_{i}^{+}(s) \quad \text { (outgoing velocity waves) }
\end{aligned}
$$

where

$$
\mathcal{A}_{i}(s) \triangleq \frac{2 R_{i}}{=\frac{\Delta}{R_{J}(s)+R_{1}+\cdots+R_{N}}}
$$

- Lossless only when $\operatorname{Re}\left\{R_{J}(j \omega)\right\} \equiv 0$
- Memoryless only when $\operatorname{Im}\left\{R_{J}(j \omega)\right\} \equiv 0$
- Dynamic load takes all scattering coefficients into Laplace domain
- Order of each "scattering-filter" equals load order
- Normally one filter can serve entire junction
- Junction load equivalent to an $N+1$ st waveguide (with no input) having (generalized) wave impedance given by load impedance $R_{J}(s)$
(consider "perfect termination" of a transmission line using a resistor equal in value to line impedance)

Alpha Parameters

Recall N velocity waveguides meeting at a series junction:

$$
\begin{aligned}
V_{J}(s) & =\sum_{i=1}^{N} \mathcal{A}_{i}(s) V_{i}^{+}(s) \\
V_{i}^{-}(s) & =V_{J}(s)-V_{i}^{+}(s) \quad \text { (junction velocity) }
\end{aligned}
$$

where

$$
\mathcal{A}_{i}(s) \triangleq \frac{2 R_{i}}{R_{J}(s)+R_{1}+\cdots+R_{N}}
$$

In the lossless (unloaded) case, $R_{J}(s)=0$, and so the alpha parameters are real and positive and add up to 2 :

$$
\alpha_{i}=\frac{2 R_{i}}{R_{1}+\cdots+R_{N}}
$$

I.e.,

$$
0 \leq \alpha_{i} \leq 2
$$

and

$$
\sum_{i=1}^{N} \alpha_{i}=2
$$

Also, we no longer have to be in the Laplace domain ($R_{J}=0$)

Time-Domain Lossless Series Scattering in terms of Alpha Parameters

$$
\begin{aligned}
& v_{J}(t)=\sum_{i=1}^{N} \alpha_{i} v_{i}^{+}(t) \\
& v_{i}^{-}(t)=v_{J}(t)-v_{i}^{+}(t)
\end{aligned}
$$

Alpha parameters conveniently parametrize lossless scattering junctions:

- Explicit coefficients of incoming traveling waves for computing junction velocity
- Losslessness assured when alpha parameters are nonnegative and sum to 2
- When alpha parameters sum to less than 2 , there is conceptually a "resistive loss" at the junction

In the lossless, equal-impedance case, $R_{i}=R, \forall i \Rightarrow$

$$
\alpha_{i}=\frac{2}{N}
$$

When N is a power of two, no multiplies are needed (multiply-free reverberators, waveguide meshes, etc., are based on this)

Reflection-Free Ports

To suppress series-junction reflections on one of the strings, say string 1 , then we set its wave impedance to the series combination (i.e., sum) of the other wave impedances meeting at the series junction:

$$
R_{1}=R_{2}+R_{3}+\cdots+R_{N}
$$

- This choice of R_{1} matches the impedance seen from string 1 when entering junction
- Such matching eliminates an impedance step seen by waves traveling from string 1 into all of the other strings

In this case, the first alpha parameter becomes

$$
\alpha_{1}=\frac{2 R_{1}}{R_{1}+R_{2}+\cdots+R_{N}}=\frac{2 R_{1}}{R_{1}+R_{1}}=1
$$

and the remaining alpha parameters can be expressed as

$$
\alpha_{i}=\frac{2 R_{i}}{2 R_{1}}=\frac{R_{i}}{R_{1}}, \quad i=1,2, \ldots, N
$$

and the sum of the $N-1$ remaining alpha parameters is therefore 1 since there is no junction load.

Normalizing by the Wave Impedance at a Reflection-Free Port

Often we only care about the signal scattering and not the specific impedance values. In that case it is convenient to divide all impedances at the junction by R_{1}, defining $\tilde{R}_{i} \triangleq R_{i} / R_{1}$, so that

$$
\begin{aligned}
\tilde{R}_{1} & =1 \\
\tilde{R}_{i} & \in[0,1], \quad i=2, \ldots, N \\
\sum_{i=2}^{N} \tilde{R}_{i} & =1 \\
\alpha_{1} & =1 \\
\alpha_{i} & =\tilde{R}_{i} \\
\sum_{i=2}^{N} \alpha_{i} & =1
\end{aligned}
$$

String 1 is said to intersect with the other strings at a reflection-free port. For $N>2$, the other strings are attached to the junction at reflecting ports.

Normalized Scattering Junctions

The normalized scattering junction

- Recall normalized waves:

$$
\tilde{f}_{i}^{+} \triangleq f_{i}^{+} / \sqrt{R_{i}} \quad \tilde{v}_{i}^{+} \triangleq v_{i}^{+} \cdot \sqrt{R_{i}}
$$

- Converting scattering to normalized waves $\tilde{f}^{ \pm}$gives

$$
\begin{aligned}
\tilde{f}_{i}^{+}(t) & =\sqrt{1-k_{i}^{2}(t)} \tilde{f}_{i-1}^{+}(t-T)-k_{i}(t) \tilde{f}_{i}^{-}(t) \\
\tilde{f}_{i-1}^{-}(t+T) & =k_{i}(t) \tilde{f}_{i-1}^{+}(t-T)+\sqrt{1-k_{i}^{2}(t)} \tilde{f}_{i}^{-}(t)
\end{aligned}
$$

- Better term = "Normalized-wave scattering junction"
- Normalized junction is equivalent to a $2 D$ rotation:

$$
\begin{aligned}
\tilde{f}_{i}^{+}(t) & =\cos \left(\theta_{i}\right) \tilde{f}_{i-1}^{+}(t-T)-\sin \left(\theta_{i}\right) \tilde{f}_{i}^{-}(t) \\
\tilde{f}_{i-1}^{-}(t+T) & =\sin \left(\theta_{i}\right) \tilde{f}_{i-1}^{+}(t-T)+\cos \left(\theta_{i}\right) \tilde{f}_{i}^{-}(t)
\end{aligned}
$$

Normalized Scattering Junction

The normalized scattering junction

- Four multiplies and two additions required
- Using transformer normalization, we can obtain three-multiply, three-add variations:

The Digital Waveguide Transformer

The ideal transformer

- scales up pressure and scales down velocity by the same factor
- steps wave impedance from R_{1} to R_{2} (and vice versa) without reflections
- conserves power
- No scattering reflections generated
- Physical in principle, but not realizable

There are engineering approximations, however:

- Conical acoustic tube
- Horn loudspeakers
- Quarter-wave microwave transformers

Transformer Scattering Formulas

General Two-Port:

The general 2-port.

Power conservation:

$$
\begin{aligned}
p_{1} u_{1} & =-p_{2} u_{2} \\
\Leftrightarrow\left(p_{1}^{+}+p_{1}^{-}\right)\left(\frac{p_{1}^{+}-p_{1}^{-}}{R_{1}}\right) & =-\left(p_{2}^{+}+p_{2}^{-}\right)\left(\frac{p_{2}^{+}-p_{2}^{-}}{R_{2}}\right)
\end{aligned}
$$

Non-reflecting:

$$
\begin{aligned}
& p_{1}^{-}=g_{1} p_{2}^{+} \\
& p_{2}^{-}=g_{2} p_{1}^{+}
\end{aligned}
$$

for some constants g_{1}, g_{2}
Solution:

$$
\begin{aligned}
& p_{1}^{-}=\sqrt{\frac{R_{1}}{R_{2}}} p_{2}^{+} \triangleq \frac{1}{g} p_{2}^{+} \\
& p_{2}^{-}=\sqrt{\frac{R_{2}}{R_{1}}} p_{1}^{+} \stackrel{\Delta}{=} g p_{1}^{+}
\end{aligned}
$$

where $g \triangleq$ transformer "turns ratio"

Wave-flow diagram:

The ideal 2-port transformer

Three-Multiply Transformer-Normalized Scattering Junction

- Using transformers, all waveguides are normalized to the same impedance, $R_{i} \equiv 1$
- g_{i} and/or $1 / g_{i}$ may have a large dynamic range
- While transformer-normalization trades a multiply for an add, up to 50% more bits needed in junction adders (see text)

Principles of Passive Construction

We can state the following general principles for passive signal processing:

- Confine all nonlinear operations to physically meaningful wave variables
- Signal power = square of physical variable times admittance or impedance
- Passivity assured if all effective gains less than 1
- Passive rounding:
- Apply to extended-precision intermediate result
- Magnitude truncation ("rounding toward zero")
- Error power feedback
- Limit cycles impossible in passive systems
- Overflow oscillations impossible in passive systems
- Energy in ideal implementation $=$ Lyapunov function bounding energy in the finite-precision implementation

Structural Losslessness - Two-Port Case

- One-multiply scattering junctions are structurally lossless: Only one parameter for which all in-range quantizations correspond to lossless scattering
- Reflection coefficient $k_{i} \in[-1,1]$
- Alpha parameter $\alpha_{i} \in[0,2]$
- Not all normalized scattering junctions are structurally lossless
- The four-multiply normalized junction has two parameters, $s_{i} \triangleq k_{i}$ and $c_{i} \triangleq \sqrt{1-k_{i}^{2}}$, which may not satisfy $s_{i}^{2}+c_{i}^{2}=1$ after quantization
- The three-multiply normalized junction requires non-amplifying rounding on the product of the quantized transformer coefficients $\left(g_{i}\right) \cdot\left(1 / g_{i}\right) \leq 1$

Net Signal Power at a Two-Port Scattering Junction

A junction is passive if the power flowing away from it does not exceed the power flowing into it

$$
\underbrace{\frac{\left[f_{i}^{+}(t)\right]^{2}}{R_{i}(t)}+\frac{\left[f_{i-1}^{-}(t+T)\right]^{2}}{R_{i-1}(t)}}_{\text {outgoing power }} \leq \underbrace{\frac{\left[f_{i-1}^{+}(t-T)\right]^{2}}{R_{i-1}(t)}+\frac{\left[f_{i}^{-}(t)\right]^{2}}{R_{i}(t)}}_{\text {incoming power }}
$$

Let \hat{f} denote the finite-precision version of f. Then a sufficient condition for junction passivity is

$$
\begin{aligned}
\left|\hat{f}_{i}^{+}(t)\right| & \leq\left|f_{i}^{+}(t)\right| \\
\left|\hat{f}_{i-1}^{-}(t+T)\right| & \leq\left|f_{i-1}^{-}(t+T)\right|
\end{aligned}
$$

Digital Waveguide Mesh

2D mesh

- Rectilinear: 4-port junctions (no multiplies)
- Hexagonal ("chicken wire"): 3-port junctions
- Triangular: 6-port junctions (staggered rect. w. diagonals)

3D mesh

- Rectilinear: 6-port junctions
- Diamond crystal lattice (tetrahedral mesh): 4-port junctions (no multiplies)

2D Rectangular Mesh

At each four-port scattering junction:

$$
\begin{aligned}
V_{J} & =\frac{\mathrm{in}_{1}+\mathrm{in}_{2}+\mathrm{in}_{3}+\mathrm{in}_{4}}{2} \\
\mathrm{out}_{k} & =V_{J}-\mathrm{in}_{k}, \quad k=1,2,3,4
\end{aligned}
$$

2D Triangular Mesh over Staggered Grid

2D Mesh and the Wave Equation

$$
\begin{aligned}
& \text { to } v_{l, m-1}
\end{aligned}
$$

Junction velocity $v_{l m}$ at time n :

$$
v_{l m}(n)=\frac{1}{2}\left[v_{l m}^{+\mathrm{N}}(n)+v_{l m}^{+\mathrm{E}}(n)+v_{l m}^{+\mathrm{S}}(n)+v_{l m}^{+\mathrm{W}}(n)\right]
$$

Junction Velocity

Junction velocity $v_{l m}$ at time n :

$$
v_{l m}(n)=\frac{1}{2}\left[v_{l m}^{+\mathrm{N}}(n)+v_{l m}^{+\mathrm{E}}(n)+v_{l m}^{+\mathrm{S}}(n)+v_{l m}^{+\mathrm{W}}(n)\right]
$$

Equivalent Finite Difference Scheme

We have
$v_{l m}(n+1)=\frac{1}{2}\left[v_{l, m+1}^{-\mathrm{S}}(n)+v_{l+1, m}^{-\mathrm{W}}(n)+v_{l, m-1}^{-\mathrm{N}}(n)+v_{l-1, m}^{-\mathrm{E}}(n)\right]$
$v_{l m}(n-1)=\frac{1}{2}\left[v_{l, m+1}^{+\mathrm{S}}(n)+v_{l+1, m}^{+\mathrm{W}}(n)+v_{l, m-1}^{+\mathrm{N}}(n)+v_{l-1, m}^{+\mathrm{E}}(n)\right]$
Adding gives a finite difference equation satisfied by the mesh

$$
v_{l m}(n+1)+v_{l m}(n-1)=\frac{v_{l, m+1}+v_{l+1, m}+v_{l, m-1}+v_{l-1, m}}{2}
$$

- Physical variables only (no traveling-wave components)
- Omitted time arguments are all ' (n) '

Subtracting $2 v_{l m}(n)$ from both sides yields

$$
\begin{aligned}
& v_{l m}(n+1)-2 v_{l m}(n)+v_{l m}(n-1) \\
& =\frac{1}{2}\left\{\left[v_{l, m+1}(n)-2 v_{l m}(n)+v_{l, m-1}(n)\right]\right. \\
& \left.\quad+\left[v_{l+1, m}(n)-2 v_{l m}(n)+v_{l-1, m}(n)\right]\right\}
\end{aligned}
$$

or, assuming $X=Y$ ("square hole" case),

$$
\begin{aligned}
& \frac{v_{l m}(n+1)-2 v_{l m}(n)+v_{l m}(n-1)}{T^{2}} \\
& =\frac{X^{2}}{2 T^{2}}\left[\frac{v_{l, m+1}(n)-2 v_{l m}(n)+v_{l, m-1}(n)}{Y^{2}}\right. \\
& \left.\quad+\frac{v_{l+1, m}(n)-2 v_{l m}(n)+v_{l-1, m}(n)}{X^{2}}\right]
\end{aligned}
$$

In the limit,

$$
\frac{\partial^{2} v(x, y, t)}{\partial t^{2}}=\frac{X^{2}}{2 T^{2}}\left[\frac{\partial^{2} v(x, y, t)}{\partial x^{2}}+\frac{\partial^{2} v(x, y, t)}{\partial y^{2}}\right]
$$

i.e., the ideal 2D wave equation

$$
\frac{\partial^{2} v}{\partial t^{2}}=c^{2}\left[\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right] \triangleq c^{2} \nabla^{2} v
$$

where ∇^{2} denotes the Laplacian, and

$$
c=\frac{1}{\sqrt{2}} \frac{X}{T}
$$

Traveling Waves on the 2D Square-Holed Mesh

We found that the 2D digital waveguide mesh satisfies a finite difference scheme which converges to the ideal 2D wave equation with wave propagation speed

$$
c=\frac{1}{\sqrt{2}} \frac{X}{T}=\frac{\sqrt{2} X}{2 T}
$$

- Every two time steps ($2 T \mathrm{sec}$) corresponds to a spatial step of $\sqrt{2} X$ meters - This is the distance from one diagonal to the next on the square-holed mesh
- Diagonal plane-wave propagation is exact
- Consider Huygens' principle along a mesh diagonal
- The x and y directions are highly dispersive:
- High frequencies travel slower than low frequencies
- Dispersion depends on frequency and direction
- The triangular mesh is much closer to isotropic:
- Dispersion more nearly the same in all directions
- Frequency-dependent dispersion can be addressed using frequency warping
- By construction, there is no attenuation at any frequency in any direction

