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Outline

• Analysis for Additive Synthesis
(in “recent historical order”):

– Channel Vocoder

– Phase Vocoder

– Tracking Spectral Peaks across Time Frames

– Sines + Noise Modeling
“Spectral Modeling Synthesis (SMS)”

– Sines + Noise + Transients
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Spectral Modeling Overview

A large class of musical sounds can be modeled efficiently
as sums of sinusoidal components (“tonals”) and noise
bands. It usually boils down into the following steps:

• Analysis in Frequency Bands over Time
(determine the components)

– Bandpass Filter Bank, or

– Short Time Fourier Transform (STFT)

• Data Reduction (optional)

• Modification (optional)

• Synthesis

– Bank of Oscillators
(traditional additive synthesis), or

– Inverse Fourier Transform
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Filter-Bank Analysis/Modification/Resynthesis
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1. Input signal is decomposed into subbands

2. Bands are processed (compressed, transformed, ...)

3. Bands are summed to form the output signal

The last step is called “filter-bank summation”’
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Applications

Applications of spectral modeling include:

• Sinusoidal modeling of “tonals” for audio compression

• Colored noise modeled as filtered white noise

• “Easily transformable” audio representation

– Time Scale Modification (TSM)

– Frequency scaling (dual of TSM)

– Cross-synthesis (e.g., “talking rain”)

• Pitch detection (detect “harmonic” relationships)

– Pitch to MIDI conversion

– Source separation

• Automatic transcription from sound to score
(hard in general - nowadays a good problem for neural
networks)

• Music synthesis and sound composition
including powerful transformation techniques
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Additive Synthesis

Overview

Additive synthesis is a technique in which a signal is
reconstructed from a summation of “sinusoids”. Each
“sinusoid” has a time varying amplitude and frequency:

y(t) =

N
∑

i=1

Ai(t) sin[θi(t)]

where

Ai(t) = Amplitude of ith partial over time t

θi(t) =

∫ t

0

ωi(t)dt + φi(0) = inst. phase

ωi(t) = Inst. frequency of ith partial vs. time

φi(0) = Initial phase of ith partial at time 0

and all quantities are real.
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Typical Looking Amplitude and Frequency
Envelopes
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Applicability of Additive Synthesis

y(t) =
N
∑

i=1

Ai(t) sin

[
∫ t

0

ωi(t)dt + φi(0)

]

• The sinusoidal signal model is efficient for tonal
signals, such as voiced speech, steady-state wind
instrument tones, plucked/struck strings, etc.

• Inefficient for noise-like signals, such as unvoiced
speech, and the “chiff” portion of flute/organ tones
⇒ Sines+Noise modeling (discussed later)

• Inefficient also for attacks, (sharp time-domain
transients) such as in percussion, note onsets
⇒ Sines+Transients modeling (discussed later)

• Most efficient when Ai(t) and ωi(t) are slowly varying
(i.e., we really have a sum of quasi-sinusoidal
components) and when φi(t) can be neglected
altogether

• It has been well known since Helmholtz that
modifications to the phases φi in a sum of sinusoids
are usually not audible
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Additive Synthesis Oscillator Bank

noise

FIR

A1(t) A2(t) A3(t) A4(t)f1(t) f2(t) f3(t) f4(t)

Σ

y(t) =
4
∑

i=1

Ai(t) sin
[

∫ t

0 ωi(t)dt + φi(0)
]

• In order to reproduce a signal, we must first analyze it
to determine the amplitude and frequency trajectories
for each sinusoidal component. We may or may not
want the phase information.

• Vocoder often used for analysis (before STFT)
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Vocoders

• ‘Voice Coder’

• Example of an analysis / synthesis system

– Analysis done by filterbanks

– Synthesis = additive

• Developed at Bell Labs (late 1930s)

• Used for speech coding and transmission

– Data compression

– Noise reduction

– Reverberation suppression

• Channel Vocoder

– Determines only the magnitude of the signal in
each filter band (historically an analog filter bank)

• Phase Vocoder

– Determines both magnitude and phase in each
band slice (STFT digital filter bank)

• A bit of history1

1https://ccrma.stanford.edu/~jos/sasp/Dudley_s_Channel_Vocoder.html
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Vocoder Block Diagram
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Input signal is decomposed into subbands.

• Channel Vocoder:

Form amplitude envelope in each band

• Phase Vocoder:

Compute amplitude and phase envelopes versus time
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Vocoder Channel Model

If we assume that we have at most 1 sinusoid with time
varying parameters in each channel, then we can write
down the following expression for xk(t), the signal in the
kth subband:

xk(t) = ak(t) cos[ωkt + φk(t)]

where

• ak(t) = amplitude modulation
• ωk = fixed channel center frequency
• φk(t) = phase (or frequency) modulation
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A F
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• Using these parameters, we can re-synthesize the
signal via oscillator summation

• A nonparametric filter-bank signal representation is
replaced by a parametric (sum-of-sinusoids) signal
model
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Vocoder Channel Model, Cont’d
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xk(t) = ak(t) cos[ωkt + φk(t)]

Typically, the instantaneous phase modulation φk(t) is
differentiated to obtain instantaneous frequency
deviation:

∆ωk(t)
∆
=

d

dt
φk(t)
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Computing Vocoder Parameters

The channel vocoder determines only the amplitude
envelope ak(t) of the signal in the kth band for each k

Classic analog envelope follower: Rectification followed
by lowpass filtering (average magnitude):

in

out

Rectification Averaging
Energy in

subband k

vs time

h(t)

t

xk(t) x̃k(t)
x̃k(t)

xk(t) yk = h ∗ x̃k

• This envelope follower is often used to recover
amplitude modulation

• It also used in analog (non-switching) power supplies
to convert ac electricity to dc

• Audio envelope followers often use a nonlinear
first-order lowpass filter which follows faster going up
(capacitor charging) than coming down (capacitor
discharging)
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Phase Vocoder

In the case of the Phase Vocoder, we need to determine
both the amplitude ak(t) and the phase φk(t) of the
signal in each subband. Under the assumption of no more
than one varying sinusoid in each subband, we can
compactly represent the signal in each channel as

xk(t) = ak(t) cos[ωkt + φk(t)]

where ωk is the fixed channel center frequency. This gives
us two real signals for each vocoder channel:

• ak(t) = instantaneous amplitude

• φk(t) = instantaneous phase modulation

ak(t) is also called the amplitude envelope.
∆ωk(t) =

d
dtφk(t) is often called the frequency envelope.

Note that the amplitude/phase modulation
decomposition is nonlinear and not unique. For example,
we could simply set φk(t) = −ωkt and ak(t) = xk(t).
(This would not be interesting.)
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Analytic Signal Processing

In order to determine these signals, it is helpful to express
the channel signal xk(t) in its complex “analytic”
representation. We will denote this by

xak(t) = re{xak(t)} + j · im{xak(t)}
∆
= ak(t)e

j[ωkt+φk(t)]

Hence,

ak(t) = |xak(t)|

φk(t) = ∠xak(t)− ωkt = instantaneous phase

= tan−1

[

im{xak(t)}

re{xak(t)}

]

− ωkt

• We normally work in practice with instantaneous

frequency deviation in place of phase:

∆ωk(t)
∆
=

d

dt
φk(t)

• Since the kth channel of an N -channel uniform
filterbank has nominal bandwidth given by fs/N , the
frequency deviation usually does not exceed
±fs/(2N) in vocoder analysis
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Hilbert Transform

Ideally, the imaginary part of the analytic signal is
obtained from its real part using the Hilbert transform:

Hilbert Transform

xk(t) re{xa
k
(t)}

im{xa
k
(t)}

Practical Hilbert transformers may be designed as FIR
filters (e.g., firpm in the Matlab Signal Processing
Toolbox). (See FIR Hilbert-Transform Design in the
lecture on the Window Method for FIR Filter Design)
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Baseband Processing

Note that xak(t) is a narrowband signal centered about
the channel frequency ωk. It is common to heterodyne

the channel output signal to “base band” by shifting its
spectrum by −ωk so as to center the channel bandwidth
about zero. This is accomplished by modulating the
analytic signal by exp(−jωkt) to get

xmk (t)
∆
= e−jωktxak(t) = ak(t)e

jφk(t)

For each of the subbands, we get data which typically
looks like the following:

ak(t)

∆ωk(t) = φ̇k(t)

0

t

t

Once we have data in this form, we can compress it
using, e.g.,
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• Piecewise linear approximation

– Large compression ratios are possible for “tonal”
signals like oboe notes

– Compression ratio depends on the nature of the
signal

• Downsample each channel (MPEG)

– Each subband is bandlimited to the channel
bandwidth

– Actually, this just gets us back to the original
number of samples

∗ N channels

∗ Downsample by N

• Requantize the signal (MPEG)

– Allocate bits depending on the amount of energy
in each subband
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Instantaneous Frequency Computation

Working with the baseband channel signals, we may
compute the frequency deviation more easily as simply
the derivative of the instantaneous phase:

∆ωk(t)
∆
=

d

dt
∠xmk (t) = φ̇k(t)

Let, x
∆
= re{xmk (t)} and y

∆
= im{xmk (t)}. Then we have

φ̇k(t) =
d

dt
tan−1

(y

x

)

=
d
dt(y/x)

1 + (y/x)2

=
x2[ẏ/x− yẋ/x2]

x2 + y2
=

xẏ − yẋ

x2 + y2
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Vocoder Demos, 26 Channels

1. Original2

2. Resynthesis3 preserving amplitude envelopes but
discarding frequency deviations

3. = 2 with Channel Frequency-Inversion.4

That is, the vocoder channels are reversed in
frequency order, which obscures the formants.

4. Noise Substitution5

Each original channel amplitude-envelope is applied to
a narrowband noise with bandwidth equal to that of
the analysis channel (instead of a sinusoid).

5. Noise Substitution and Frequency Inversion6

Parameters:

• fs = 8 kHz sampling rate

• 26 vocoder channels, auditory spaced

2http://ccrma.stanford.edu/~jos/wav/SteveJobs.wav
3http://ccrma.stanford.edu/~jos/wav/SteveJobs_sine_n_26.wav
4http://ccrma.stanford.edu/~jos/wav/SteveJobs_sine_i_26.wav
5http://ccrma.stanford.edu/~jos/wav/SteveJobs_noise_n_26.wav
6http://ccrma.stanford.edu/~jos/wav/SteveJobs_noise_i_26.wav
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Vocoder Demos, 5 Channels

1. Original7

2. Resynthesis8 preserving amplitude envelopes but
discarding frequency deviations

3. = 2 with Channel Frequency-Inversion.9

That is, the vocoder channels are reversed in
frequency order, which obscures the formants.

4. Noise Substitution10

Each original channel amplitude-envelope is applied to
a narrowband noise with bandwidth equal to that of
the analysis channel (instead of a sinusoid).

5. Noise Substitution and Frequency Inversion11

Parameters:

• fs = 8 kHz sampling rate

• 5 vocoder channels

• Center frequencies at 148 Hz, 392 Hz, 825 Hz, 1.6
kHz, and 3 kHz

7http://ccrma.stanford.edu/~jos/wav/SteveJobs.wav
8http://ccrma.stanford.edu/~jos/wav/SteveJobs_sine_n_5.wav
9http://ccrma.stanford.edu/~jos/wav/SteveJobs_sine_i_5.wav

10http://ccrma.stanford.edu/~jos/wav/SteveJobs_noise_n_5.wav
11http://ccrma.stanford.edu/~jos/wav/SteveJobs_noise_i_5.wav
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Vocoder Limitations

There are some inherent problems with the vocoder:

• We required a maximum of one quasi-sinusoid per
subband

– This means we need lots of filters

• Poor model for signal transient or sharp attack

• Inconvenient for inharmonic signals

• Inefficient model for signals with noise-like qualities
(e.g., flute)

• Not an identity system
(unless phase retained and no data reduction done)

• Computationally expensive
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Tracking Sinusoidal Peaks in a
Sequence of FFTs

This technique addresses some of the problems inherent
in vocoders.

Important points:

• Applicable to inharmonic sounds (e.g., piano)

• Analysis only near spectral peaks,
not in every filter band

• “Non-coherent” sinusoidal parameter estimation from
magnitude spectrum (peak amplitude,
center-frequency, and sometimes phase)

• Quadratic interpolation and zero-padding may be
used to accurately find spectral magnitude peaks

• The Short Time (fast) Fourier Transform (STFT) is
used for analysis

– STFT can be interpreted as a filterbank
(more on this later)

– FFT makes it computationally feasible to
implement filter banks with a large number of
analysis filters
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• Resynthesis using oscillator bank or IFFT

• Original signal is replaced by oscillator amplitude and
frequency envelopes

• When a signal is converted entirely to envelopes,
time-scale modification and frequency scaling become
easy (simply resample the envelopes)

The following diagram depicts the general analysis
system:

FFT

dB mag
Peak

tracking

Quadratic

Peak

Interpolation

Frequencies

Amplitudes

Phases

s(n)

window w(n)

tan−1

• For steady-state signals, phase is usually discarded

• Phase is normally needed for frames containing a
transient, or to provide a phase-locked transition to a
transient frame
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Peak Tracking across Frames

• Sinusoidal peaks must be associated across frames

• Linear interpolation may be used to define the
instantaneous amplitude and frequency between
frames, when phase is discarded (PARSHL12).

• When phase is retained, cubic phase interpolation can
be used from frame to frame (McAulay and Quatieri).

freq

time

12http://ccrma.stanford.edu/~jos/parshl/
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A transient detector on the side can be used to indicate
when the peak phases should be retained:

• Differentiated amplitude envelope of high-passed
time-domain signal

• Linear prediction error

See Scott Levine CCRMA thesis13

Synthesis is performed using a bank of amplitude- and
phase-modulated oscillators:

Phase Unwrapping

and Interpolation

Linear

Inerpolation

Phase

Frequency

Amplitude

Oscillators

OutputΘ(t)

A(t)

(Phase-Preserving Case)

13http://ccrma.stanford.edu/~scottl/thesis.html
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Sines+Noise Modeling

Sines+Noise Synthesis (S+N) generalizes the sinusoidal
signal models to include a filtered noise component:

A1(t) A2(t) A3(t) A4(t)f1(t) f2(t) f3(t) f4(t)

∑

[new] noise
u(t) filter

ht(τ)

y(t) =
4
∑

i=1

Ai(t) cos
[

∫ t

0 ωi(t)dt + φi(0)
]

+ (ht ∗ u)(t)

where

• u(t) = white noise

• ht(·) = slowly changing noise filter

Sines + Noise Sound Examples
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Xavier Serra 1989 thesis demos (Sines + Noise signal
modeling)

• Guitar

– Original

– Sinusoids alone

– Residual after sinusoids removed

– Sines + noise model

• Piano

– Original

– Sinusoids alone

– Residual after sinusoids removed

– Sines + noise model

• Voice

– Original

– Sinusoids

– Residual

– Synthesis

– Original, Sinusoids, Residual, Synthesis

Musical Effects with Sines+Noise Models
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http://ccrma.stanford.edu/~jos/wav/xjs-9-speech-synth.wav


• Piano Effects

– Pitch downshift one octave

– Pitch flattened

– Varying partial stretching

• Voice Effects

– Frequency-scale by 0.6

– Frequency-scale by 0.4 and stretch partials

– Variable time-scaling, deterministic to stochastic
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Cross-Synthesis with Sines+Noise Models

• Voice “modulator”

• Creaking ship’s mast “carrier”

• Voice-modulated creaking mast

• Same with modified spectral envelopes
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Sines + Transients Sound Examples

In this technique, the sinusoidal sum is phase-matched at
the cross-over point only (with no cross-fade).

• Marimba

– Original

– Sinusoidal model

– Original attack, followed by sinusoidal model

• Piano

– Original

– Sinusoidal model

– Original attack, followed by sinusoidal model

Notes

• Only one voice analyzed at a time

• Analyzed sounds were generally tonal (having a
distinct pitch)

• FFT analysis resolution was fixed by window length (a
few periods)

• No transient model (but sinusoids could start with
correct initial phase)
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Sines+Noise+Transients

Why Model Transients Separately?

• Sinusoids efficiently model spectral peaks over time

• Filtered noise efficiently models spectral residual vs. t

• Neither is good for abrupt transients in waveform

• Need to switch to a transient model during transients

• Need sinusoidal phase matching at the switching time

Transient models

• Original waveform frame

• Wavelet expansion

• MPEG-2 AAC (with short window)

• Frequency-domain LPC
(time-domain amplitude envelope)
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Time Scaling for
Sines+Noise+Transients Models
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time

(From Scott Levine’s Thesis)

• In sines+noise models, transients are “smeared” over
time

• In sines+noise+transients models, they are only
time-shifted

• Missed transients can cause artifacts in S+N+T
models

• Need to consider carefully what should be defined as
a transient

• Hybrid schemes possible (transients stretch some)
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Sines + Noise + Transients
Time-Frequency Map
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(From Scott Levine’s Thesis)
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Corresponding Analysis Windows

0 50 100 150 200 250

time [milliseconds]

a
m

p
lit

u
d

e
tr

a
n

s
ie

n
t

h
ig

h
 o

c
ta

v
e

m
id

d
le

 o
c
ta

v
e

lo
w

 o
c
ta

v
e

(From Scott Levine’s Thesis)
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Quasi-Constant-Q (Wavelet)
Time-Frequency Map
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(From Scott Levine’s Thesis)
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Micro-Transients
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(From Scott Levine’s Thesis)
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Bark-Band Noise Modeling at High Frequencies

0 500 1000 1500 2000 2500 3000 3500 4000 4500
30

35

40

45

50

55

60

65

70

75

80

85

frequency [Hz]

m
a

g
n

it
u

d
e

 [
d

B
]

(From Scott Levine’s Thesis)
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Amplitude Envelope for One Noise Band
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(From Scott Levine’s Thesis)

For more information, see Scott Levine’s thesis.14

14http://ccrma.stanford.edu/~scottl/thesis.html
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Sines + Noise + Transients Sound Examples

Scott Levine Thesis Demos
(http://ccrma.stanford.edu/~scottl/thesis.html)

Sines + Noise + Transients at 32 kbps

Mozart’s Le Nozze di Figaro

• Original

• Compressed using MPEG-AAC at 32 kbps

• Compressed using sines+transients+noise at 32 kbps

• Multiresolution sinusoids alone

• Residual Bark-band noise

• Transform-coded transients (AAC)

• Bark-band noise above 5 kHz

40

http://ccrma.stanford.edu/~scottl/
http://ccrma.stanford.edu/~jos/wav/levine-figaro-orig.wav
http://ccrma.stanford.edu/~jos/wav/levine-figaro-aac-32kb-norm-mono.wav
http://ccrma.stanford.edu/~jos/wav/levine-figaro-all-t10.wav
http://ccrma.stanford.edu/~jos/wav/levine-figaro-sines-t10.wav
http://ccrma.stanford.edu/~jos/wav/levine-figaro-res_noise-t10.wav
http://ccrma.stanford.edu/~jos/wav/levine-figaro-transients-t10.wav
http://ccrma.stanford.edu/~jos/wav/levine-figaro-noise-t10.wav


“It Takes Two” by Rob Base & DJ E-Z Rock

• Original

• MPEG-AAC at 32 kbps

• Sines+transients+noise at 32 kbps

• Multiresolution sinusoids

• Residual Bark-band noise

• Transform-coded transients (AAC)

• Bark-band noise above 5 kHz

41

http://ccrma.stanford.edu/~jos/wav/levine-rock-orig.wav
http://ccrma.stanford.edu/~jos/wav/levine-rock-aac-32kb-norm-mono.wav
http://ccrma.stanford.edu/~jos/wav/levine-rock-all-t10.wav
http://ccrma.stanford.edu/~jos/wav/levine-rock-sines-t10.wav
http://ccrma.stanford.edu/~jos/wav/levine-rock-res_noise-t10.wav
http://ccrma.stanford.edu/~jos/wav/levine-rock-transients-t10.wav
http://ccrma.stanford.edu/~jos/wav/levine-rock-noise-t10.wav


Time-Scale Modification

(pitch unchanged)

• Time-scale factors [2.0, 1.6, 1.2, 1.0, 0.8, 0.6, 0.5]

Pitch Scaling (timing unchanged)

• Pitch-scale factors [0.89, 0.94, 1.00, 1.06, 1.12]

42

http://ccrma.stanford.edu/~jos/wav/levine-looped-rock-rev.wav
http://ccrma.stanford.edu/~jos/wav/levine-pitched-rock-loop.wav

