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Outline

• Three Finite Difference Schemes:

– Differential Equations → Difference Equations

– Digital Waveguide (DW) Method

– Wave Digital (WD) Method

• Selected Recent Research

• The Future of Musical Instruments?
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Acoustic Modeling Elements

y(x,t) 

x=0 x=L x0 xN x1 . . . xk . . . 

yk(t) 

Distributed Lumped 

• Distributed elements (propagating waves):

– Vibrating strings

– Woodwinds

– Brasses

– Pipes

• Lumped elements
(vibrating masses, springs, dashpots):

– Brass-player lip models

– Woodwind reeds

– Piano hammer
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Finite Difference Approximation (FDA)

Consider the simple differential equation relating velocity
and force for an ideal mass:

f(t)

x(t)

m

0

v(t)

f (t) = m
dv

dt

Finite Difference Approximation:

dv

dt
≈ vn − vn−1

T
(“backward difference”)

≈ vn+1 − vn−1

2T
(“centered difference”)

E.g.,

vn = vn−1 +
T

m
fn, n = 0, 1, 2, . . . .

(FDA for a force-driven mass)
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Frequency Domain Analysis

FDA, force-drive mass m:

vn = vn−1 +
T

m
fn, n = 0, 1, 2, . . .

z transform (v−1 = 0):

V (z) = z−1V (z) +
T

m
F (z)

Driving Point Impedance (digital):

R(z)
∆
=

F (z)

V (z)
= m

1− z−1

T

Continuous-time driving point impedance:

f (t) = m
dv

dt
←→ F (s) = msV (s)

⇒ R(s)
∆
=

F (s)

V (s)
= ms

Thus, the FDA maps s plane to the z plane as follows:

s← 1− z−1

T
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Properties of Backwards Difference Frequency
Mapping

s← 1− z−1

T

jω 

s plane 

 
unit 
circle 

image of  
jω axis 

z plane 

• dc (s = 0) maps to dc (z = 1)

• infinite frequency (s =∞) maps to (z = 0)

• no aliasing (mapping is one-to-one)

• frequency axis is warped

The continuous and discrete frequency axes are related by

jωa ←
1− e−jωdT

T
= jωd +O(ω2

dT )

Thus, accurate results can be expected at low frequencies
relative to the sampling rate 1/T .
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The Bilinear Transform

A class of bilinear transforms map the entire jω axis in
the s plane exactly once to the unit circle in the z plane:

s = c
1− z−1

1 + z−1

• dc (s = 0) maps to dc (z = 1) as for the FDA

• infinite frequency (s =∞) maps to half the sampling
rate (z = −1) instead of z = 0 for the FDA

• damping characteristics are better preserved

• no aliasing (mapping is one-to-one)

• frequency axis remains warped away from dc

The real constant c > 0 allows one nonzero frequency (at
s = jωa) to map exactly to any desired digital frequency
(at z = ejωdT ). All other frequencies are warped :

jωa = c
1− e−jωdT

1 + e−jωdT
= jc tan

(

ωdT

2

)
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Bilinear Transform of the Ideal Mass

Starting with the driving point impedance

R(s)
∆
=

F (s)

V (s)
= ms

the bilinear transform gives the digital impedance

Fd(z)

Vd(z)
∆
= Rd(z) = R

(

c
1− z−1

1 + z−1

)

= mc
1− z−1

1 + z−1

Multiplying out

Fd(z) + z−1Fd(z) = mcVd(z)−mcz−1Vd(z)

and taking the inverse z transform gives

fn + fn−1 = mc (vn − vn−1)

or

vn = vn−1 +
1

mc
(fn + fn−1)

(The fn−1 term is new relative to the FDA.)

Can check: Equivalent to trapezoid rule for numerical
integration
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Accuracy

Backward-difference approximation:

ωa = ωd +O(ω2
dT )

Trapezoid rule (bilinear transform):

ωa = ωd +O(ω3
dT

2)

• Trapezoid rule (bilinear transform) is second-order
accurate in T .

• Higher order accuracy obtainable using more
neighboring grid points.

• How should these extra grid points be brought in?
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Digital Filter Design Approach

The driving-point impedance R(s) = ms of an ideal
mass is an ideal differentiator (scaled by m):

R(jω) = mjω.

It is therefore natural to define the ideal digital
differentiator as

H(ejωT ) = jω, ωT ∈ [−π, π)

Re

Im

Gain

Re

Im

Gain

• An exact match is not possible with a finite order
digital filter (note frequency-response discontinuity at
z = −1)

• In practice, we minimize
∥

∥

∥
H(ejωT )− Ĥ(ejωT )

∥

∥

∥

where Ĥ is a digital filter frequency response

• We need some oversampling in order to have a
guard band (e.g., from 20 kHz to 22 kHz)

• Desired response is unconstrained in the guard band

10



Limitations of Digital Filter Design

Digital filter design works best for linear, time-invariant
elements.

• What about nonlinear systems?
(Example: clarinet mouthpiece)

• What if physical parameters are changing over time?
(Example: stopped violin string with vibrato)

• What if two different systems collide?
(Example: piano hammer striking a string)

Approaches for nonlinear, time-varying systems:

• Filter coefficient interpolation

• Filter switching
(usually filter state must be modified as well)

• Filters having a precise physical interpretation
(true “explicit finite difference schemes”)

Both the digital waveguide and wave digital modeling
frameworks have precise physical interpretations. They
both therefore classify as physically meaningful explicit
finite difference schemes.
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Digital Waveguide Modeling

Moving Termination: Ideal String

y(t,x)

x=L

x

x=0

c
y ≡ 0Position at rest:

v0

x=c t0

Moving rigid termination for an ideal string at time
0 < t0 < L/c.

• Left endpoint moved at velocity v0 by an external
force f0 = Rv0, where R =

√
Kε is the wave

impedance for transverse waves on the string

• Relevant to bowed strings (when bow pulls string)
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Waveguide “Equivalent Circuits” for the
Uniformly Moving Rigid String Termination

(x = 0) (x = L)

vRf 00 =

(x = 0) (x = L)

-1-1

v0

a)

b)

f(n)

a) Velocity waves.
b) Force waves.

• String moves with speed v0 or 0 only

• String is always one or two straight segments

• A “Helmholtz corner” (slope discontinuity) shuttles
back and forth at speed c

• String slope increases without bound

13

• Applied force at termination steps up to infinity
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String Snapshots for Moving Termination

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

String Driven by Moving Termination

Position x

D
is

pl
ac

em
en

t y

• Successive snapshots of the ideal string with a
uniformly moving rigid termination

• Each plot is offset slightly higher for clarity

• GIF89A animation at
http://ccrma.stanford.edu/˜jos/swgt/movet.html
(search jos website for “animation”)
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External String Excitation at a Point

(x = 0) (x = L)

-1         “Bridge”
Rigid Termination

w (n)+

          “Nut”
Rigid Termination

w (n)-

-1

Delay N

∆ w (nT,mX)

Delay N

(x = mX)

String OutputDelay M

Delay M

Equivalent System: Delay Consolidation

Delay 2N

String Output

-
∆ w (nT,mX) Delay 2M

Equivalent System: Comb Filter Factored Out

-

Delay 2M

String Output

∆ w (nT,mX) Delay 2N+2M
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Bowed Strings

Bridge-
Body

Bow Force

Bow to Bridge Delay

String

Reflection
Filter

Body
Filter

Bridge to Bow Delay

Nut to Bow Delay

Bow to Nut Delay

-1

String BowNut Air

Bow Velocity

-

v+
ls,

v+
rs,

v∆
+ ρ̂

v−
ls,

v−
rs,

- *
vb

Bow Table

• Reflection filter summarizes all losses per period
(due to bridge, bow, finger, etc.)

• Bow-string junction = memoryless lookup table
(or segmented polynomial) ⇒ no thermodynamic
model in this version

• Bow-hair dynamics neglected

• Finite bow width neglected
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Single-Reed Instruments

Bell

Mouth
Pressure

Embouchure
Offset

Reed to Bell Delay
( )npm

2

BoreReed

Reflection
Filter

Output
Filter

Bell to Reed Delay

( )np+
b

( )np−
b

-

-
h∆

+

hm

-

*
ρ̂

Reed Table

Software

See the Synthesis Toolkit (STK) distributed by CCRMA:
http://ccrma.stanford.edu/CCRMA/Software/STK/

Google search: “STK clarinet”

Sound Examples

Google search: “waveguide sound examples”
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2D Waveguide Mesh

z−1 z−1

4-port
Scattering
Junction

z−1

z−1

z−1 z−1

4-port
Scattering
Junction

z−1

z−1

z−1 z−1

4-port
Scattering
Junction

z−1

z−1

z−1

z−1

z−1 z−1

4-port
Scattering
Junction

z−1

z−1

z−1 z−1

4-port
Scattering
Junction

z−1

z−1

z−1 z−1

4-port
Scattering
Junction

z−1

z−1

z−1

z−1

z−1 z−1

4-port
Scattering
Junction

z−1

z−1

z−1 z−1

4-port
Scattering
Junction

z−1

z−1

z−1 z−1

4-port
Scattering
Junction

z−1

z−1

z−1

z−1

z−1 z−1 z−1 z−1 z−1 z−1
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At each junction:

VJ =
in1 + in2 + in3 + in4

2
outk = VJ − ink, k = 1, 2, 3, 4
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Wave Digital Filters

Wave digital elements may be derived as follows:

1. Express forces and velocities as sums of
traveling-wave components (“wave variables”):

f (t) = f+(t) + f−(t)

v(t) = v+(t) + v−(t)

The actual “travel time” is always zero.

2. Digitize via the bilinear transform (trapezoid rule)

3. Use scattering junctions (“adaptors”) to connect
elements together in series and/or parallel.
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Physical Construction of Traveling-Wave Element
Interfaces

F+(s)

F−(s)

V (s)
a)

b)

+

-

F (s)

F−R (s)

F+
R (s)

F−(s)

F+(s)

R(s)R0

K(s) KR(s)

TR(s)

T (s)

R(s)R0

• The inserted waveguide impedance R0 is arbitrary
because it was physically introduced.

• The element now interfaces to other elements by
abutting its waveguide (transmission line) to that of
other element(s).

• Such junctions involve lossless wave scattering :

F+
R (s) = T (s)F+(s) + KR(s)F−R (s)

F−(s) = TR(s)F−R (s) + K(s)F+(s)
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Wave Digital Mass Derivation

For an ideal mass m, we have the driving point
impedance

R(s) = ms

which, when used to terminate a waveguide of impedance
R0, gives the reflectance

Sm(s) =
ms−R0

ms + R0

(continuous time, Laplace domain). Setting R0 = m
gives

Sm(s) =
s− 1

s + 1
Digitizing using the bilinear transform gives the digital
reflectance

S̃m(z)
∆
= Sm

(

1− z−1

1 + z−1

)

= −z−1

The corresponding difference equation is then simply

f−(n) = −f+(n− 1)

(wave digital mass).
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Elementary Wave Flow Diagrams

z−1

-1

( )nf −
 

( )nf +
 

Wave digital mass

z−1

( )nf +
 

( )nf −
 

Wave digital spring

0( )nf −
 

( )nf +
 

Wave digital dashpot
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Example: “Piano hammer in flight”

Mass m at constant velocity:

(a) (b)

=

x(n) x(n)

f−(n)

f+(n)

z−1 z−1

−1

−1

• State variable is in units of force (x(n)
∆
= f+(n− 1))

• Physical force is f (n) = f+(n) + f−(n) ≡ 0

• Nonzero state variable ⇒ nonzero mass velocity
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Mass Velocity

(a) (b)

=

x(n) x(n)

f−(n)

f+(n)

z−1 z−1

−1

−1

Force-wave simulations easily provide velocity outputs:

v(n) = v+(n) + v−(n) =
f+(n)

m
− f−(n)

m

=
x(n)

m
+

x(n)

m
=

2

m
x(n)

Thus, the mass velocity is simply the state variable x(n)
scaled by 2/m.
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Spring and Free Mass

m
vk(t)

fk(t) = fm(t) = f(t)f(t)

k
vm(t)

+

-
f(t)

vmv(t)

vk m1
k

+

-

f(t)

−1

k m

vk vm

z−1z−1

Three parallel branches ⇒ three-port parallel adaptor
needed
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Wave Digital Spring-Mass System

f(n)
2

m

k

0
f(n)

2

−1

z−1

z−1

Equivalent Diagram
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f+
m(n)

x2(n)

f(n)

−f−m(n)

f+
k (n)

x1(n)

-

f−k (n)

z−1

z−1
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Wave Digital Mass-Spring Oscillator

m

vm(t)

fk(t) = fm(t)

k

vk(t)

m1
k

k m

f+
k (n)

f+
m(n)f−k (n)

z−1
z−1

−1

By flipping an element reference direction, we could
realize also as a series connection.
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Expanded Wave Digital Mass-Spring Oscillator

1 + ρ

1− ρ

−ρρ

x2(n)

x1(n)

wave digital masswave digital spring

f−k (n)

f+
k (n) f−m(n)

f+
m(n)

z−1z−1

−1

Wave variables to Physical Variables:

fk(n) = f+
k (n) + f−k (n) (Spring Force)

fm(n) = f+
m(n) + f−m(n) (Mass Force)

Reflection coefficient:

ρ =
m− k

m + k

(Impedance step over impedance sum from one
infinitesimal waveguide to the next.)
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Kelly-Lochbaum Vocal Tract Model

k1 − k1

1 − k1

1 + k1

R1

z− 21

z− 21

z− 21

z− 21

…

…
kM − kM

1 − kM

1 + kM

RM

Glottal Pulse
Train or Noise

e(n)
Speech
Output

y(n)

(Unused
Allpass
Output)

Kelly-Lochbaum Vocal Tract Model (Piecewise Cylindrical)

…e(n) y(n)

• Wave impedance in section i:

Ri =
ρc

Ai

where Ai = cross-sectional area of tube

• Reflection coefficient at ith cylinder-cylinder junction:

ki
∆
=

Ri −Ri−1

Ri + Ri−1

• Can be interpreted either as a digital waveguide or
wave digital model of the vocal tract.

• For correct tuning of two or more resonance
(formants), digital waveguide models are required.
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Digital Waveguide versus Wave Digital

Digital Waveguides:

• System is distributed (vocal tract, bore, string, plate)

• Signals are traveling waves digitized via sampling

• Aliasing occurs for frequencies greater than fs/2

• Frequency axis is preserved up to fs/2

• Relative tuning is preserved.

• Damping is preserved

• Stability preserved

Wave Digital :

• System is lumped (masses, springs, dashpots)

• Signals are traveling waves digitized by the
bilinear transform

• No aliasing — entire frequency axis is mapped

• Frequency axis is nonuniformly warped

• One resonance frequency can be preserved.

• Damping decreases with frequency

• Stability preserved
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Selected Research Summaries

• Colliding Strings

• Feathered Valve Closures

• Joint Vocal-Tract/Glottal-Pulse Model

• Sturm-Liouville Bore Modeling

• Energy Invariant Piano Hammer

• Hyper-Bow meets Virtual Violin
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String Collisions

(Krishnaswamy & Smith)

y−

y+

−1 −1

Uniform String

y+

yso

z−1

z−1

z−1

z−1 z−1

z−1

z−1

z−1

y+ + y− ≥ yso y+ + y− < yso

y−y−
out

y+
out

−

−

y+
out

y−
out y−

y+

=

=

Transition to Collision
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Previous Solution

1

2

3

4

5

6

7

8

9

10

11

String Displacement Lines: y+   Dots: y−
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Refined Solution (WASPAA-03)

1

2

3

4

5

6

7

8

9

10

11

String Displacement Lines: y+   Dots: y−
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Coupled FDS for Distributed Collision Support

w−

r1
w−

l1

w+

r1w+

l1

w+

l0
w+

r0

WG

WG WG

WG

FDS

fr0

fl1 fr1

w−

l0

fl0

w−

r0

FDS
WG
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Feathered Valve Closures

(Smyth, Abel, & Smith)

� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �
� �� �� �� �� �� �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

2h

2ax

p0 p1y = 0

bronchus trachea

membrane

cartilage

dU

dt
=

√
2A(t0)

1
2

ρ
(p0(t0)− p1(t0))−

U(t0)
2

√
2A(t0)

3
2

• The volume-flow Bernoulli term behaves differently
depending on whether the channel area A(t) is small
or large.

• When A(t) is small and the volume flow U(t) changes
direction, the volume flow is truncated to zero.

• Problem: Truncation is inaccurate, causing aliasing.
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Aliasing During Upward Glissando

Syrinx Spectrogram
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Solution

Solve the differential equation for small channel areas
A(t) =⇒

dU

dt
=

√
2A(t0)

1
2

ρ
[p0(t0)−p1(t0)]−

U(t0)
2

√
2A(t0)

3
2

· 1

1 + U(t0)T
√

2A(t0)
3
2

“Feathering term” U(t0)T/
√

2A(t0)
3
2 reduces volume

flow derivative in the presence of small channel areas
A(t) and large sampling periods T , giving a more
accurate volume flow and reducing aliasing.
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Effect of “Feathering Term” on Volume Flow

U(t)

U(t0)

U(t0 + T)

t

A

t0 t0 + T

Volume Flow vs. Time in Syrinx Oscillation

10 15 20 25
−20
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20

40

60

80

100

120
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Volu
me 

flow
 U (

mL/
s)
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Reduced Aliasing during Upward Glissando

Syrinx Spectrogram
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Voice Modeling

Linear Prediction (LP) Vocal Tract Model

k1 − k1

1 − k1

1 + k1

R1

z− 21

z− 21

z− 21

z− 21

…

…
kM − kM

1 − kM

1 + kM

RM

Glottal Pulse
Train or Noise

e(n)
Speech
Output

y(n)

(Unused
Allpass
Output)

Kelly-Lochbaum Vocal Tract Model (Piecewise Cylindrical)

…e(n) y(n)

• Drawn here in Kelly Lochbaum form

• For LP, excitation e(n) must be either an

– impulse, or

– white noise

This restriction precludes a true physical model

• A more realistic glottal waveform e(n) is needed
before the vocal tract filter can have the “right shape”
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Klatt Derivative Glottal Wave

0 25 50 75 100 125 150 175 200 225 250
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Time (samples)

Am
pl

itu
de

Two periods of the basic voicing waveform

• Good for estimation:

– Truncated parabola each period

– Coefficients easily fit to phase-aligned inverse-filter
output
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Sequential Unconstrained Minimization

(Hui Ling Lu)
(Google search: “CCRMA Singing/Speech Synthesis”)

Klatt glottal (parabola) parameters are estimated jointly
with vocal tract filter coefficients

• Formulation resembles that of the equation error
method for system identification

• For phase alignement, we estimate

– pitch (time varying)

– glottal closure instant each period

• Optimization is convex in all but the phase-alignment
dimension
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Liljencrantz-Fant Derivative Glottal Wave Model

0 0.005 0.01 0.015
0

10
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de

Time (sec)

To

Uo
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LF glottal wave and LF derivative glottal wave

0 0.005 0.01 0.015
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0
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Time (sec)

ToTp TcTe

−Ee

glottal wave 

derivative glottal wave 
Ta

• Better for intuitively parametrized expressive synthesis

• LF model parameters are fit to inverse filter output

• Use of Klatt model in forming filter estimate yields a
“more physical” filter than LP
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Parametrized Phonation Types

100 200 300 400 500 600 700 800 900 1000
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0

1 pressed

100 200 300 400 500 600 700 800 900 1000
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1 normal
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Conical Digital Waveguide Bore Models

Cylinder with Conical Cap

ξ

T(s)
R(s)

a)

b) -1R(s)
T(s)

Delay

Delay

Delay ξ/c

Delay ξ/c. . .

. . .

. . .

. . .

• Cylinder open or closed on left side

• Otherwise closed

• Obviously passive physically

• Reflection filters R(s) and transmission filters T (s)
are unstable one-pole filters.

• Instability is “canceled” by reflection from tip.
(More precisely, there is no instability.)
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Sturm-Liouville Scattering

(David P. Berners)
(Google search: “David Berners”)

Instead of an abrubt change, spread it out over a region:

(From David Berners EE/CCRMA thesis)

• Waveguide Curvature ↔ Potential Function:

V (x) ∝ r′′(x)

r(x)

where r(x) is the radius of the wavefront as a
function of position x along the cone axis.
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Traveling Mode through a Potential Barrier

(From David Berners EE/CCRMA thesis)
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Trapped Mode in a Potential Well

(From David Berners EE/CCRMA thesis)
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Normalized Wave Digital Piano Hammer

Wave Digital Mass-Spring Oscillator

1 + ρ

1− ρ

−ρρ

x2(n)

x1(n)

wave digital masswave digital spring

f−k (n)

f+
k (n) f−m(n)

f+
m(n)

z−1z−1

−1

Convert force waves to root-power waves:

f̃+
i

∆
=

f+
i√
Ri

ṽ+
i

∆
= v+

i ·
√

Ri

where Ri = wave impedance in waveguide i.
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Normalized Wave Digital Mass-Spring Oscillator

−ρρ

f̃−k (n) f̃+
m(n)

normalized wave digital massnormalized wave digital spring

√

1 + ρ2

√

1− ρ2
f̃−m(n)f̃+

k (n)

z−1z−1

−1

• Stored energy invariant with respect to time varying
and/or nonlinear changes in mass or spring constants

• For the piano hammer, the felt spring constant may
vary with force fk(n) without altering stored energy

• Only the reflection coefficient ρ(n) varies as the
spring is compressed

• Note delay-free interdependence of ρ(n) and fk(n)

• See Bensa & Bilbao et al. (SMAC-03) for an update
on the lossy normalized wave digital piano hammer

54



The Virtual Violin Project

(Serafin & Young)

The goal of this project is to create a virtual bowed string
instrument that

• reproduces traditional bow strokes known to players,

• extends possibilities offered by traditional instruments.

We use a bow with a wireless sensing system connected
to a real-time waveguide bowed string physical model.
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The Future of Musical Instruments?

Some Observations

• In the beginning of computer music, there was the
tape piece, usually for four channels.

• The audience sat in a darkened auditorium with
nothing to look at but the speakers.

• Since then, there has been increasing integration of
live performance.

• Initially, performers were slaves to the computer clock.

• Nowadays, computers are “listening” more, allowing
performers more control.
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Speculations

• Extrapolating, we might predict that live
performances will be “technology enhanced” in
increasingly subtle ways.

• There is always room for new controller interfaces,
enabling new kinds of live performance.

• Audio and visual experiences can be much more
tightly integrated than is typical now.

• “Virtual Environments” will become more complete,
compelling, and interactive.

• Traditional musical instruments could evolve into
controllers for virtual musical instruments.

– The Serafin & Young Virtual Violin Project is one
example

– Controllers need not be responsible for the final
sound
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Related Fronts

• Virtual Performers

• Synthesis-Based Audio Coders

– MPEG-4 (SAOL)

– Noise reduction by resynthesis

• Speaker Arrays
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