Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Interpolating a DFT


Starting with a sampled spectrum $ X(\omega_k)$ , $ k=0,1,\ldots,N-1$ , we may interpolate ideally by taking the DTFT of the zero-padded IDFT:

\begin{eqnarray*}
X(\omega) &=& \hbox{\sc DTFT}_{\omega}(\hbox{\sc ZeroPad}_{\infty}(\hbox{\sc IDFT}_N(X)))\\
&\mathrel{\stackrel{\mathrm{\Delta}}{=}}& \sum_{n=-N/2}^{N/2-1}\left[\frac{1}{N}\sum_{k=0}^{N-1}X(\omega_k)
e^{j\omega_k n}\right]e^{-j\omega n}\\
&=& \sum_{k=0}^{N-1}X(\omega_k)
\left[\frac{1}{N}\sum_{n=-N/2}^{N/2-1} e^{j(\omega_k-\omega) n}\right]\\
&=& \sum_{k=0}^{N-1}X(\omega_k)\hbox{asinc}_N(\omega-\omega_k)\\
&=& \left<X,\hbox{\sc Sample}_{\Omega_N}(\hbox{\sc Shift}_{\omega}(\hbox{asinc}_N))\right>\\
&=& (X\circledast \hbox{asinc}_N)_\omega,
\end{eqnarray*}

where $ \circledast $ denotes convolution between a discrete ($ X$ ) and continuous ( $ \hbox{asinc}$ ) signal. (If math operators adapt to their argument types like perl functions, we can simply use $ \ast$ as usual.)


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[Comment on this page via email]

``Review of the Discrete Fourier Transform (DFT)'', by Julius O. Smith III, (From Lecture Overheads, Music 421).
Copyright © 2020-06-27 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]