
MUS420 Supplement
Modal Synthesis of a Piano String

Stefan Bilbao and Julius O. Smith III (jos@ccrma.stanford.edu)
Center for Computer Research in Music and Acoustics (CCRMA)

Department of Music, Stanford University
Stanford, California 94305

February 5, 2019

Outline:

• Piano String Modeling

• Finite Difference Scheme for the Piano String

• Listening to the String

• State Space Formulation

• Diagonalizing to Modal Coordinates

• Adding the Nonlinear Hammer

• Features of Modal State-Space Coordinates

1

Piano String Modeling

Physical picture:

x=0 
x=L 

y(x,t) 

hammer 

strike point 

Chaigne and Askenfelt (JASA, Feb. 1995) suggested the
following partial differential equation (PDE) to model the
piano string:

∂2y

∂t2
= c2

∂2y

∂x2
− ǫc2L2∂

4y

∂x4
− 2b1

∂y

∂t
+ 2b3

∂3y

∂t3
+ f (x, y, t)

In addition, we must specify

• boundary conditions

• initial conditions (usually zero position and velocity).

2

http://ccrma.stanford.edu/~{}bilbao/
http://ccrma.stanford.edu/~jos
http://ccrma.stanford.edu/
http://www.stanford.edu/group/Music/
http://www.stanford.edu/


Piano String Model, Continued

∂2y

∂t2
= c2

∂2y

∂x2
− ǫc2L2∂

4y

∂x4
− 2b1

∂y

∂t
+ 2b3

∂3y

∂t3
+ f (x, y, t)

• y(t, x) represents transverse displacement along the
string at time t seconds and position m meters

• L is the string length in meters

• The PDE takes into account

– dispersion (fourth space derivative)

– frequency-dependent loss from 3rd time derivative

– hammer excitation denoted by f (x, y, t)

• A derivation of the wave equation for stiff strings is
given in Morse 1948 and in many acoustics texts.
(Cremer 1984 is especially good.)
(See the Course Bibliography1 for full citations.)

1http://ccrma.stanford.edu/~jos/refs420/

3

Second-Order Finite Difference Schemes

The simplest (and traditional) way of discretizing the 1D
wave equation is by replacing first derivatives by
first-order differences

∂y

∂t

∣

∣

∣

∣

x=mX,t=nT

≃
ynm − yn−1

m

T

∂y

∂x

∣

∣

∣

∣

x=mX,t=nT

≃
ynm − yn−1

m

X

and second derivatives by second-order differences

∂2y

∂t2

∣

∣

∣

∣

x=mX,t=nT

≃
yn−1
m − 2ynm + yn+1

m

T 2

∂2y

∂x2

∣

∣

∣

∣

x=mX,t=nT

≃
ynm−1 − 2ynm + ynm+1)

X2

and so on, where ynm
∆
= y(nT,mX) are the grid variables.

Note that we have uniformly sampled the time-space
plane, with timestep T (the temporal sampling interval)
and space step X (the spatial sampling interval).

4

http://ccrma.stanford.edu/~jos/refs420/


FDS for the Ideal String

Consider first the ideal (lossless, dispersionless, unforced)
string wave equation:

∂2y

∂t2
= c2

∂2y

∂x2

Replacing the second-derivatives by their finite-difference
approximations gives

yn−1
m − 2ynm + yn+1

m =
c2T 2

X2
(ynm−1 − 2ynm + ynm+1)

If we choose X = cT (which is most natural physically),
the equation reduces further to

yn+1
m = ynm−1 + ynm+1 − yn−1

m

Let’s examine this recursion on the time-space grid,
assuming for the moment no boundary conditions:

5

Time-Space Grid for the Second-Order Ideal

String FDS

yn+1
m = ynm−1 + ynm+1 − yn−1

m

 n+1 

n 

n-1 

n-2 

m  m+1 m-1 

spatial step 

time 

 

current point 

• Grid variable at “current” point depends on value at
two previous time steps (a second order scheme in
time). Our initial conditions must therefore specify
y(n,m) for all m at times n = 0 and n = 1.

• Grid variable at “current” point depends on values at
adjacent locations on the string (at previous time).

• Difference scheme is explicit (thus parallelizable);
that is, each grid variable at time n + 1 depends only
on grid variables at previous time instants.

6



Piano String Finite Difference Scheme

The Chaigne and Askenfelt PDE is discretized in space
and time to yield a recursive difference scheme with the
following space-time “stencil”:

 n+1 

n 

n-1 

n-2 

n-3 

m  m+1 m-1 

spatial step 

time 

• 3rd order in time, 4th order in space

• Explicit, enabling recursive time updates

The FDS can be written in matrix form as

yn = A1yn−1 +A2yn−2 +A3yn−3 + gfn(yn−1[ih], y
h
n−1)

where

• The column vector yn contains the displacements of
the N nodes at time step n, i.e., yn[i] = yni

• A1A2 and A3 are N by N matrices

7

Piano String FDS, Continued

We have

yn = A1yn−1 +A2yn−2 +A3yn−3 + gfn(yn−1[ih], y
h
n−1)

The string displacement is updated in time by three
matrix-vector products, plus a forcing term
gfn(yn−1[ih], y

h(n− 1)):

• The length N × 1 matrix g represents the shape of
the hammer excitation over the length of the string.
The nonzero elements correspond to the width of the
hammer relative to that of the string. For greatest
accuracy, it should be time varying, but it may be
approximated by a constant shape.

• The element yn[ih] is the string displacement sample
closest to the hammer position.

• The scalar function yhn denotes hammer position at
time n.

• The scalar function fn(yn[ih], y
h
n) sets the amplitude

of the hammer force distribution across position at
time n.

8



• The force exerted on the string by the hammer is a
nonlinear function of the hammer-string separation
yhn − yn[ih].

• The time evolution of the hammer must be computed
numerically by a separate finite difference scheme.
Typical models include a classical point mass, a
nonlinear spring (which gets stiffer when
compressed), and a very small amount of damping.

Note that the FDS involves 3 steps of “lookback.” It
turns out this model goes unstable in the limit as the
sampling rate goes to infinity!

• There is no problem at any normal audio sampling
rate—the sampling rate must be on the order of
hundreds of megahertz to trigger the instability.

• The model can be stabilized at all sampling rates by
using instead a two-time-step scheme.

• Watch for forthcoming publications by Stefan Bilbao
at CCRMA.

• We’ll talk about stability of finite difference schemes
later.

9

Listening to the String

• Chaigne and Askenfelt compute string displacement
at every node on the string, at each time step. This is
useful for visualizations, etc.

• For sound synthesis, we need only “listen” to the
string at the “bridge”. The bridge is where most of
the string vibrational energy couples to the piano
soundboard.

• Let’s define the output as

yout = C1yn

where C1 is some constant row vector. A typical
choice of C1 might be C1 = [0, . . . , 0, 1], which picks
out the last sample of string dispacement nearest the
bridge.

• More generally, we could take any linear combination
of string displacement samples as the output.

10



State Space Formulation of the
Piano String FDS

• We can now write the entire system, ignoring the
nonlinear hammer for the moment, as

yn = A1yn−1 +A2yn−2 +A3yn−3

yout = C1yn

• Collecting the displacements into a state vector, we
can rewrite this as





yn

yn−1

yn−2



 =





A1 A2 A3

IN − −
− IN −









yn−1

yn−2

yn−3





yout =
[

C1 0 0
]





yn−1

yn−2

yn−3





or

xn = Axn−1

yout = Cxn

11

Changing to Modal Coordinates

Now the system is in state space form, suppose we
change to diagonal coordinates:

zn = Dzn−1

yout = C′zn

where

D =













































λ1

λ∗
1
. . .

λN

λ∗
N





















ǫ1
. . .

ǫN

































The N complex-conjugate-pair eigenvalues λi represent
the modal frequencies and dampings

λi = Rie
jωiT , 0 < Ri < 1, −π < ωiT < π

• The main (desired) effect of the third order partial
derivative with respect to time is to make the
damping factors Ri be smaller for higher-frequency
modes.

12



• A secondary effect is that the modal frequencies ωi

are slightly shifted.

• Another secondary effect of the third-order time
derivative is the introduction of N real rapidly
decaying modes, characterized by the ǫi. These
eigenvalues are typically negligible.

We can reduce the size of the system to 2N , and further
change coordinates so that the matrix is made up of N 2
by 2 real “modal” blocks as follows:

D
′′

=























[

0 1
−|λ1|

2 2Re(λ1)

]

[

0 1
−|λ2|

2 2Re(λ2)

]

.

.

.

[

0 1
−|λN |

2 2Re(λN)

]























13

Features of Modal State-Space Coordinates

• Input and output locations must be known and fixed

• The ith mode of the system is simulated in isolation

xn[i] = λixn−1[i] + b′iun

yn = C′xn

Notes:

– the input gain b′i specifies how the input signal un
excites mode i

– the output state-gain-vector C′ specifies how all
the modes add up (weighted) to form the output

– The mode-input gain vector B′ = [b′1, . . . , b
′
N ]

changes if the physical input is moved

– C′ changes if the physical output is moved

– The system modes do not change when the input
or output are moved

• Dispersion modeling (mode tuning) is much easier
than in a finite difference approximation

• Frequency-dependent damping is also much easier

• Extends to higher order models (time and/or space)

14



• Extends simply to spatially varying media
(not Fourier based)

• Can also be used for implicit finite difference schemes

• Relatively efficient when modes are inharmonic
(bells, gongs, mallet percussion)

• When mode frequencies are nearly harmonic (strings,
woodwinds, brasses) digital waveguide models are
more efficient (we’ll take them up later).

15


