Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Changing to Modal Coordinates

Now the system is in state space form, suppose we change to diagonal coordinates:

\begin{eqnarray*}
{\bf z_{n}} &=& {\bf D}{\bf z_{n-1}} \\
y_{out} &=& {\bf C^\prime z_{n}}
\end{eqnarray*}

where

\begin{eqnarray*}
{\bf D} = {\left [\begin{matrix}
\left [\begin{matrix}
\lambda_{1} & & & & \cr
& \lambda_{1}^{*} & & & \cr
& & \ddots \cr & & \cr
& & & \lambda_{N} & \cr
& & & & \lambda_{N}^{*} \cr \end{matrix}\right ] & \cr
& \left [\begin{matrix}
\epsilon_{1} & & \cr
& \ddots & \cr
& & \epsilon_{N} \cr \end{matrix}\right]\end{matrix}\right ]}
\end{eqnarray*}

The $ N$ complex-conjugate-pair eigenvalues $ \lambda_{i}$ represent the modal frequencies and dampings

$\displaystyle \lambda_i = R_i e^{j\omega_i T}, \quad 0 < R_i < 1, \quad -\pi < \omega_i T < \pi
$

We can reduce the size of the system to $ 2N$ , and further change coordinates so that the matrix is made up of $ N$ 2 by 2 real ``modal'' blocks as follows:

\begin{eqnarray*}
{\bf D^{''}} = {\left [\begin{matrix}
\left [\begin{matrix}
0 & 1 \cr -\vert\lambda_{1}\vert^{2} & 2Re(\lambda_{1})\end{matrix}\right ] & & & \cr
& \left [\begin{matrix}0 & 1 \cr -\vert\lambda_{2}\vert^{2} & 2Re(\lambda_{2})\end{matrix}\right ] & & \cr
& & \ddots & \cr
& & & \left [\begin{matrix}0 & 1 \cr -\vert\lambda_{N}\vert^{2} & 2Re(\lambda_{N})\end{matrix}\right ] \cr
\end{matrix}\right ]}
\end{eqnarray*}


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download PianoString.pdf
Download PianoString_2up.pdf
Download PianoString_4up.pdf

``Modal Synthesis of a Piano String'', by Stefan Bilbao and Julius O. Smith III, (From Lecture Overheads, Music 420).
Copyright © 2019-02-05 by Stefan Bilbao and Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]