Outline

- The Piano
- Commuted Piano Synthesis
- Hammer Modeling
- Piano String Modeling

The Piano

Acoustics of the Piano

- Five Lectures on the Acoustics of the Piano
- The Piano Hammer as a Nonlinear Spring

Piano Synthesis

We know how to

- simulate strings efficiently
- couple strings at the bridge

We will now discuss how to

- commute resonators and strings (for speed)
- convolve resonator impulse response with excitation (hammer)
- simulate a piano hammer in more detail
- identify the string-loop filter for stiff strings

Features of Commuted Synthesis

- Enormous resonators can be implemented inexpensively (three orders of magnitude less computation for typical stringed instruments)
- Good qualitative excitation signals are easy to measure (just tap on the bridge)
- Apparent “resonator size” can be modulated by changing the playback rate of the excitation table

Drawbacks:

- Requires linearity and time invariance
Commuted Piano Synthesis

Hammer-string interaction pulses (force):

- Vertical lines = locations and amplitudes of three impulses
- Hammer-string interaction signal synthesized using one to three digital filters
- Filters depend on striking velocity

Synthesis of One Hammer-String Interaction Pulse

- Filter input = impulse
- Filter output = desired hammer-string force pulse
- As input amplitude increases, output pulse narrows \(\Rightarrow\) nonlinear filter
- For each specific impulse, filter is linear time-invariant
- Piano is “linearized” separately for each hammer velocity

Synthesis of Multiple Hammer-String Interaction Pulse

Multiple hammer-string interaction pulses = superposition of several individual pulses:

- Input to each filter is a single impulse
- Sum of outputs = superposition of hammer-string force pulses
- As impulse amplitude grows, output pulses become taller and thinner, showing less overlap.

Complete Piano Model

Natural Ordering:

- Soundboard and enclosure are commuted
- Only need a stored recording of their impulse response
- An enormous digital filter is otherwise required

Commuted Ordering:
Simplified Variations of the Commuted Piano

One interaction pulse:

Up to three identical interaction pulses:

Hammer/String Collision Velocity
Optimal Output Scaling
Lowpass Filter
String
Excitation Table

Optional Output Scaling

Three General Interaction Pulses

Differentially Filtered Interaction Pulses

Each new delay is equal to the travel from the hammer, to the agraffe, and back to the hammer

Striking a Digital Waveguide String

Waveguide string in “physical canonical form”:

Delay lines contain traveling force waves
Hammer-string force pulses are summed into both directions (by physical symmetry)

Equivalent Computational Models

• Hammer position set by feedforward comb filter
• String model independent of hammer position (more valuable for plucked strings)
• Same factoring applies to pickup locations
Use of a Tapped Delay Line

- Delay-line tap simulates hammer-strike echoes returning from the far end of the string
- Total delay line length equals twice the travel time along the entire length of the string
- Placement is not critical, so an interpolating tap is not necessary
- Tap motion gives a free built-in “flanger” effect
- Since force waves are most convenient, no sign inversion at the string endpoints

Excitation Factoring

Committed Piano Synthesizer:

A few small filters are retained in parametric form for

- Soundboard and enclosure
- Equalization for color variations
- Reverberation
- Flange
- Chorus
- Simulated hammer-strike echoes
- Multiple outputs

Filters are easily modified, even while a note is playing

Piano and Harpsichord Sound Examples

- http://ccrma.stanford.edu/~jos/wav/Harpsichord.wav
- Julien Bensa’s synthetic piano

The Ideal (Lossless) Stiff String

Simulation of a rigidly terminated, stiff string.

- All N allpass filters $H_a(z)$ have had a minimum sample of delay extracted, corresponding to the delay at $f_s/2$
- All have been combined at a single point
- The delay-line length N is the number of samples in K periods of f_K, where K is the number of the highest partial (usually the last one before $f_s/2$)
- In stiff strings, high frequencies travel faster ⇒ allpass delay decreases with frequency
- An order 10 allpass gives high quality piano synthesis
- FFT convolution most efficient for maximum accuracy (FIR filter length $\approx N/2$ for note F1)
High-quality frequency-response model based on measurements from a grand-piano string, note F1.

Stiff-String Loop-Filter Identification

A basic problem in waveguide synthesis of string is identifying the loop filter $H_l(z)$ which controls

- Partial overtone decay time (due to $|H_l(e^{j\omega})|$)
- Partial overtone tuning perturbations (due to $\angle H_l(e^{j\omega})$)

Loop-Filter Design Methods

One of the earliest methods was “periodic linear prediction” — a linear combination of a small group of samples predicts a sample one period away from the midpoint of the group.

More recently, methods have been developed based on measurements of the time-constant of decay for each partial overtone, since this is what matters the most.

- Record a plucked (or struck) string.
- Measure frequency f_k and decay time τ_k for each overtone.
 - Energy Decay Relief (EDR) useful for this purpose
 - Sinusoidal modeling has been used as well
 - In either case:
 * Fit a straight line to the log of the amplitude envelope (e.g., using polyfit in Matlab or Octave).
 * Decay time τ_k is simply related to the slope of this line.

- Translate each decay-time τ_k into a desired loop-gain at each frequency f_k, thus determining $|H_l(e^{j\omega_k})|$ for each partial.
- If desired, use the inharmonic spacing of the f_k to compute samples of the desired phase of the loop filter, $\angle H_l(e^{j\omega_k})$.
- Use a general purpose digital filter design routine to design the loop filter which best approximates the desired frequency-response samples $H_l(e^{j\omega_k})$.
- Phase-matching filter design utilities:
 - Steiglitz-McBride algorithm (IIR or FIR) See stmbcb in Matlab Signal Processing Tool Box
 - Equation-Error Minimization (IIR or FIR) See invfreqz in matlab
 - Hankel-Norm Minimization (IIR)
Also called a “balanced truncation model” (state space)
 – Linear-phase FIR (fir1, firls, remez)

- Phase-insensitive filter design:
 – Linear Prediction
 See lpc or yulewalk in the Matlab SPTB
 – Create a desired linear or minimum phase and use a phase-sensitive design method.

- The fit at low frequencies should be weighted higher.
- A simple $1/f$ weighting usually works well.

- Bark spectral warping is commonly used. It implicitly weights low frequencies more by “stretching out” the low-frequency frequency axis and compressing the high-frequency frequency axis.

- Piano strings are highly dispersive:
 – Recall that every LTI filter can be factored into a linear phase filter in series with an allpass filter
 – The allpass part for a low-pitched string requires on the order of 100 poles (and 100 zeros) to provide a closely matched impulse response
 – Ten poles is a typical number used in practice (can be very good perceptually)

- Most methods for allpass filter design fail numerically at this high order
- The linear-phase part, in contrast, is well approximated using only an 8-tap FIR filter, and can be designed by any good method for FIR filter design (e.g., invfreqz in Matlab/Octave)

Order Estimation

Given a desired frequency response, a rough digital filter order estimate can be obtained as follows:

- FIR: Look at the IFFT duration (e.g., $20 \log(|h(n)|)$)
- IIR: Start with half of the FIR order (equal degrees of freedom)
- For piano strings, a low-order minimum-phase damping filter is fine because we’re going to need a high-order allpass dispersion filter anyway