Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Weighted OverLap Add (WOLA) Procedure

The sequence of operations in a WOLA processor can be expressed as follows:

  1. Extract the $ m$ th windowed frame of data $ x_m(n)=x(n)w(n-mR)$ , $ n=m,\ldots,m+N-1$ (assuming a length $ M\leq N$ causal window $ w$ and hop size $ R$ ).

  2. Take an FFT of the $ m$ th frame translated to time zero, $ {\tilde x}_m(n)=x_m(n+mR)$ , to produce the $ m$ th spectral frame $ {\tilde X}_m(\omega_k)$ , $ k=0,\ldots,N-1$ .

  3. Process $ {\tilde X}_m(\omega_k)$ as desired to produce $ {\tilde Y}_m(\omega_k)$ .

  4. Inverse FFT $ {\tilde Y}_m$ to produce $ {\tilde y}_m(n)$ , $ n=0,\ldots,N-1$ .

  5. Apply a synthesis window $ f(n)$ to $ {\tilde y}_m(n)$ to yield a weighted output frame $ {\tilde y}^f_m(n) = {\tilde y}_m(n)f(n)$ , $ n=0,\ldots,N-1$ .

  6. Translate the $ m$ th output frame to time $ mR$ as $ y^f_m(n) =
{\tilde y}^f_m(n-mR)$ and add to the accumulated output signal $ y(n)$ .


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[Comment on this page via email]

``FFT Signal Processing: The Overlap-Add (OLA) Method for Fourier Analysis, Modification, and Resynthesis'', by Julius O. Smith III, (From Lecture Overheads, Music 421).
Copyright © 2020-06-27 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]