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Outline

• Convolution of Short Signals (one window)

• Convolution with Long Signals (multiple windows)

• Time Varying FIR Filtering (new each window)

• Poisson Summation Formula (window COLA test)
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Course Outline Up to Now

• Fourier Theorems

• FFT Windows

• FIR Filter Design

• Tonal Spectrum Analysis

• Noise Spectrum Analysis

• Audio Spectral Display (Spectrograms)

• FFT Signal Processors
[we are here]
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Frequency-Domain Convolution

hx(t) y(t) = (x∗ h)(t)

In discrete time,

y(n)
∆
= (x∗h)(n)

∆
=

∞∑

m=0

x(m)h(n−m), n = 0, 1, 2, . . .

where x and h are assumed causal

Convolution Theorem:

(h ∗ x) ←→ H ·X

or
DTFTω(h ∗ x) = H(ω)X(ω)

where H and X are the DTFTs of h and x, respectively.
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FFT Convolution

If x and h have finite (nonzero) support, then so does
x ∗ h, and we may sample the frequency axis of the
DTFT:

DFTk(h ∗ x) = H(ωk)X(ωk)

where H and X are the N -point DFTs of h and x,
respectively.

The DFT performs circular (cyclic) convolution:

y(n)
∆
= (x ∗ h)(n)

∆
=

N−1∑

m=0

x(m)h(n−m)N

where (n−m)N means “(n−m) modulo N”

Two methods:

• direct calculation of the summation = O(N 2)

• frequency-domain approach = O(N lgN)

– DFT both x and h to obtain X and H

– Multiply pointwise to obtain Y = X ·H

– Inverse DFT to get y in the time domain
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Audio FIR Filters

Do we need FFT convolution for practical audio filters?

Yes:

• FFT convolution [O(N lgN)] starts beating
time-domain convolution [O(N 2)] for N ≥ 128 or so
(on a single CPU)

• The nominal “integration time” of the ear, defined,
e.g., as the reciprocal of a Bark critical-bandwidth of
hearing, is greater than 10ms below 500 Hz

• At a 50 kHz sampling rate, this is 500 samples

• FIR filters shorter than the ear’s “integration time”
can generally be characterized by their magnitude
frequency response (no perceivable “delay effects”)

• Thus, even “perceptually instantaneous” FIR filters
can easily be hundreds of taps long

• For longer FIR filters, the FFT advantage is that
much greater

• We conclude that FFT convolution is an important
implementation tool for FIR filters in digital audio
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Zero Padding for Acyclic FFT Convolution

Recall: Zero-padding embeds acyclic convolution in
cyclic convolution:

∗ =

Nx +Nh -1Nx Nh

N N N

• In general, the nonzero length of y = h ∗ x is
Ny = Nx +Nh − 1

• Therefore, we need FFT length N ≥ Nx +Nh − 1

(zero-padding factor
∆
= N/Nx)

• When zero-padding is insufficient
(N < Nx +Nh − 1), convolution terms “wrap
around” in time (due to modulo indexing), giving
time aliasing

• We typically zero-pad even more (to the next power
of 2) so we can use the split-radix Cooley-Tukey FFT
for maximum speed
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FFT Convolution Example 1: Low Pass
Filtering

Problem Statement: Design and implement a
low-pass filter

• Fcut = 600Hz

• Filter length L = 257 taps

• Signal x(n) is a sum of sinusoidal components
(440, 880, 1000, 2000Hz)

• We can choose frame length M = 256 so that the
FFT size N = M + L− 1 = 512 has just enough
zero-padding for frequency-domain filtering without
aliasing in the time domain
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Example 1: Input Signal

% Signal parameters:

f = [ 440 880 1000 2000 ]; % frequencies

M = 256; % signal length

Fs = 5000; % sampling rate

% Generate a signal by adding up sinusoids:

x = zeros(1,M); % pre-allocate ’accumulator’

n = 0:(M-1); % discrete-time grid

for fk = f;

x = x + sin(2*pi*n*fk/Fs);

end

0 50 100 150 200 250

−3

−2

−1

0

1

2

3

Signal

Time (samples)

A
m

p
lit

u
d

e

Input Signal: Time-Domain Waveform
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Example 1: FIR Filter Design

% Filter parameters:

L = 257; % filter length

fc = 600; % cutoff frequency

% Design the filter using the window method:

hsupp = (-(L-1)/2:(L-1)/2);

hideal = (2*fc/Fs)*sinc(2*fc*hsupp/Fs);

h = hamming(L)’ .* hideal; % h is our filter
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Impulse Response and Amplitude Response
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Prepare for Frequency-Domain Convolution

% Choose the next power of 2 greater than L+M-1

Nfft = 2^(ceil(log2(L+M-1))); % or 2^nextpow2(L+M-1)

% Zero pad the signal and impulse response:

sigzp = [ sig zeros(1,Nfft-M) ];

hzp = [ h zeros(1,Nfft-L) ];

% Transform the signal and the filter:

S = fft(sigzp);

H = fft(hzp);
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Perform Frequency-Domain Convolution

Sfilt = S .* H; % Filter = frequency-domain window
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The filter output is now obtained by the inverse Fourier
transform
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Return to Time Domain

After IFFT, imaginary part is not quite zero due to finite
numerical precision:

sfilt = ifft(Sfilt);

rmserrpct = 100*norm(imag(sfilt))/norm(sfilt) % check

sfilt = real(sfilt);
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• For a signal of length ≈ 4000, this was 2-3 times
faster than conv() in Matlab

• Note approximately equal amounts of “pre-ringing”
and “post-ringing” due to filter being linear phase
(symmetry would be exact if signal were left-right
symmetric)
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Zoom-In on Start-Up Transient
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Example 2: Time Domain Aliasing

This example shows the effect of insufficient zero padding
(undersampling in the frequency domain)
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• Lowpass filter length L = 65

• Data frame length M = 100 (impulse at time 0 and
M − (L− 1)/4 = 85)

• Nfft = M + (L− 1)/4 = 116,M + (L− 1)/2 =
132,M + L = 165

• Nfft ≥M + L− 1 avoids time-domain aliasing
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FFT Convolution Across Frames

For FIR-filtering of very long signals, the
OverLap-Add (OLA) method is often used:

• Partition the input signal into adjacent frames (i.e.,
using the “rectangular window”)

• Process each frame as in the previous example
(zero pad, FFT, window by H, IFFT)

• Sum the (overlapping) frames into an
overlap-add output buffer

Extensions:

• The FIR filter h can also be broken up into frames

– Basis for low-latency FFT convolution techniques

• Initial signal partitioning can be a more general
overlap-add decomposition (e.g., Hann window with
50% overlap)

– Needed for nonlinear STFT processing
(not needed for simple FFT convolution)
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Overlap-Add Signal Decomposition

Consider breaking the input signal x, into frames using a
finite, zero-centered, length M (odd) window. Let xm
denote the mth frame.

xm(n)
∆
= x(n)w(n−mR) n ∈ (−∞,+∞)

or
xm

∆
= x · ShiftmR(w)

where

R
∆
= frame step (hop size) m

∆
= frame index

The hop size is the number of samples between adjacent
frames. Specifically, it is the number of samples by which
we advance each succesive window.

For fast convolution only, choose

• w = wR = rectangular window

• R = M (hop size = window length)
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Example Overlap-Add Decomposition

0 50 100 150 200 250
-1

0

1
Succesive Windowed Frames (causal window, 50% overlap-add)

x

0 50 100 150 200 250
-1

0

1

x_
0

0 50 100 150 200 250
-1

0

1

x_
1

0 50 100 150 200 250
-1

0

1

x_
2

Time (samples

We desire the sum of overlapping frames xm to give back
the original input signal x:

x(n) =
∞∑

m=−∞

xm(n) =
∞∑

m=−∞

x(n)w(n−mR) = x(n)
∞∑

m=−∞

w(n−mR)

Hence, x =
∑

m xm if and only if
∑

m

w(n−mR) = 1 (COLA condition)
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Constant Overlap-Add (COLA) Constraint

We found that x =
∑

m xm if and only if
∑

m

w(n−mR) = 1 (COLA condition)

• This is the constant-overlap-add (COLA) constraint
for the FFT analysis window w

• Also called the partition of unity property
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COLA Windows

50% OLA for the Bartlett (triangular) window:

• All windows which obey the constant-overlap-add
constraint will yield perfect reconstruction of the
original signal from the data frames by overlap-add
(OLA)

• There is no constraint on window type, only that the
window overlap-adds to a constant for the hop size
used

• If simple FIR filtering is being implemented, and we
don’t need a high-quality intermediate STFT, it is
most efficient to use the rectangular window with hop
size R = M , and to set M + L− 1 = N , where L is
the length of the filter h

• The optimum window length M for a given filter
length L is an interesting exercise to work out
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Modified-Hamming Overlap-Add Example

Matlab code:

M = 33; % window length

w = hamming(M); % window

R = (M-1)/2; % maximum hop size

w(M) = 0; % ’periodic Hamming’ (COLA)
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COLA Periodic Hamming Window
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Oversampled Perfect Reconstruction Filter Banks

Emphasis:

We now know how to make a fast,
Perfect-Reconstruction (PR) filter bank out of

• Hopping FFT

• Sufficient zero-padding

• COLA(R) window

However, we are not normally using critically sampled
time and frequency axes (needed for compression)
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COLA Window and Hop-Size Examples

• Recall COLA Examples1 for the STFT

• Bartlett window at 50% overlap (R ≈M/2)
(first figure above)

• Hamming window at 50% overlap (R ≈M/2)
(second figure above)

• We will use the Poisson Summation Formula (derived
below) to easily determine all COLA hop sizes for a
given window

1https://ccrma.stanford.edu/~jos/TimeFreqDisplay/COLA_Examples.html
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Periodic Windows

Be careful to define your own windows for exact
overlap-add, or else at least check the definitions in use
to make sure they work. E.g., in Matlab:

• hamming(M)
∆
=

.54 - .46*cos(2*pi*(0:M-1)’/(M-1));

gives constant overlap-add for R = (M − 1)/2,
(M − 1)/4, etc., when endpoints are divided by 2 or
one endpoint is zeroed

• hanning(M)
∆
=

.5*(1 - cos(2*pi*(1:M)’/(M+1)));

does not give constant overlap-add for
R = (M − 1)/2, but does for R = (M + 1)/2

• blackman(M)
∆
=

(.42 - .5*cos(2*pi*(0:M-1)/(M-1)) +

.08*cos(4*pi*(0:M-1)/(M-1)))’;

gives constant overlap-add for R = (M − 1)/3 when
M is odd and R is an integer, and R = M/3 when
M is even and R is integer
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Example 3: Overlap-Add Convolution

• Impulse-train signal, 4000 Hz sampling-rate

• Length 32 lowpass filter, 600 Hz cut-off

• Length M = 32 Hanning overlap-add window (causal)

• Hop size = R = M/2 (50% overlap)

Matlab code:

Fs = 4000; % sampling rate in Hz

Nsig = 128; % signal length in samples

L = 32; % filter length in taps

fc = 600; % cutoff frequency in Hz

M = 32; % window length

Nfft = 2^(ceil(log2( M + L - 1))); % FFT Length

R = M/2; % Hop Size

Nframes = floor( Nsig/R ); % No. of frames

% Generate a test signal containing five impulses

sig = zeros(1,Nsig); period = round(Nsig/5);

sig(1:period:Nsig) = ones(size(1:period:Nsig));

figure(1);clf

subplot(211); stem(sig); axis( [0 length(sig) -0.2 1.2]);

subplot(212); stem(h); grid; axis( [0 length(h) -0.2 0.5]);

% *** design a lowpass filter using the window method

epsilon = .0001; % avoids 0 / 0

nfilt = (-(L-1)/2:(L-1)/2) + epsilon;
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hideal = sin( 2*pi*fc*nfilt/Fs ) ./ (pi*nfilt); % sinc fn

h = hamming( L )’ .* hideal; % windowed sinc fn

hzp = [h zeros(1,Nfft-L)]; % Zero-pad h to FFT size

H = fft(hzp); % Filter frequency response

y = zeros(1,Nsig + Nfft); % Allocate the output+’ringing’ vector

% *** Overlap add loop, with plots

figure(2);

subplot(411); stem(sig); axis( [0 length(sig) -0.2 1.2]);

title(’signal’); ylabel(’amplitude’);

window = hanning(M)’; % Signal window (could also be rect)

for m = 0:(Nframes-1)

index = m*R+1:min(m*R+M,Nsig); % index for the mth frame

xm = sig(index) .* window(index-m*R); % windowed mth frame

xmzp = [ xm zeros(1,Nfft-length(xm))]; % zero pad the signal

Xm = fft( xmzp );

Xfilt = Xm .* H; % freq domain multiplication

xmfilt = real(ifft(Xfilt)); % inverse transform

outindex = m*R+1:(m*R+Nfft); %

y(outindex) = y(outindex) + xmfilt; % overlap add

xmplot = [ zeros(1,m*R) xm zeros(1,Nsig-(m*R+M)) ];

winplot = [ zeros(1,m*R) window zeros(1,Nsig-(m*R+M)) ];

xmfiltplot = [ zeros(1,m*R) xmfilt zeros(1,Nsig-(m*R+Nfft)) ];

subplot(412);stem(xmplot); axis( [0 length(sig) -0.2 1.2]);

hold on; plot(winplot,’--’); hold off

title(’windowed frame’);

subplot(413);plot(xmfiltplot); grid; axis( [0 length(sig) -0.1 0.4]);;

title(’windowed frame - filtered’);

subplot(414);plot(y); grid; axis( [0 length(sig) -0.1 0.4]);

title(’overlapp add buffer’); xlabel(’samples’);

cmd = sprintf(’print -deps ola%d’,m); disp(cmd); eval(cmd);

end
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Frame 1, OLA Example 3
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Frame 2, OLA Example 3

0 20 40 60 80 100 120

0

0.5

1

windowed frame

0 20 40 60 80 100 120

0

0.2

0.4
windowed frame − filtered

0 20 40 60 80 100 120

0

0.2

0.4
overlapp add buffer

samples

0 20 40 60 80 100 120

0

0.5

1

signal

a
m

p
lit

u
d
e

28



Penultimate Frame, OLA Example 3
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Final Frame, OLA Example 3
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OLA Summary

• OLA provides an efficient method for implementing
LTI systems having impulse responses over ≈ 100
samples

• FFT results in minimized computations

Specifically, we ended up with:

y =

∞∑

m=−∞

ShiftmR

(
DFT−1N {H ·DFTN [Shift−mR(x) · w]}

)

(Shifts acyclic here)
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OLA Summary, Cont’d

Stated as a procedure, we have

(1) Extract the mth frame of data at time mR.

(2) Shift it to the base time interval [0,M − 1] (or
[−(M − 1)/2, (M − 1)/2]).

(3) Apply the analysis window w (causal or zero centered,
as preferred).

(4) Zero-pad the windowed data out to the FFT size (a
power of 2).

(5) Take the N -point FFT.

(6) Apply the filter H as a windowing operation in the
frequency domain.

(7) Take the N -point inverse FFT.

(8) Shift the origin of the N -point result out to sample
mR where it belongs.

(9) Sum into the output buffer containing the results
from prior frames (OLA step).
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OLA Summary, Cont’d

There were several conditions for exact FIR filtering:

• To avoid time domain aliasing: N ≥M + L− 1

– M = window length

– N = DFT length

– L = FIR filter length

– Equivalent to a minimum sampling-rate
requirement in the frequency domain

•
∑

m

w(n−mR) = 1 (COLA constraint)
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Quick Summary of Zero Padding

Why zero pad?

• Spectral Interpolation

– Clearer spectral magnitude/phase plots

– Sinusoidal peak tracking
(e.g. to help quadratic interpolation)

• To extend to the next highest power of 2 (FFT)

• To make room for “filter ringing” in overlap-add
convolution using the FFT
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Overlap-Save Method

The OverLap-Save (OLS) method, unlike OLA, uses no
zero padding to prevent time aliasing. Instead, it

1. discards output samples corrupted by time aliasing
each frame, and

2. overlaps the input frames by the same amount.

• In general, if the input frame size is M = N and the
FIR filter length is L < N , then after convolution,
L− 1 samples of the output are invalid due to time
aliasing

• For causal filters of length L:

– The invalid samples are the first L− 1 samples of
each length N inverse FFT, because these samples
are computed using time-aliased samples from the
end of the length N FFT input frame

– Therefore, the input signal should have at least
L− 1 leading zeros

– The hop size is set to R = N − L + 1 so that the
last L− 1 samples of frame 1 become the first
segment of frame 2. These samples have already

35

been output from frame 1 and can now be
overwritten by time aliasing by the processing of
frame 2.

– The length N blocks overlap by L− 1 samples.
L− 1 samples from the previous block are “saved”
rather than reread from disk—hence the name
“OverLap Save (OLS)”.

• For anticausal filters:

– The invalid samples are at the end of the frame

– The input signal needs no leading zeros

– The hop size is again R = N − L + 1

– Samples 0 through R− 1 are written out, ignoring
the last L− 1 samples corrupted by time aliasing

• For general non-causal FIR filters, there are bad
samples at the beginning and end of each inverse
FFT.

• The overlap-save method is generally somewhat more
efficient than the overlap-add method because it does
not use zero padding, and there is no overap-add on
output

• Exercise: Compare the computational complexities
of overlap-add and overlap-save for the case
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N = M + L− 1, where M is the frame length, L is
the filter length, and N is the FFT size. Show that
zero-phase filters yield the most efficient overlap-save
scheme for a given filter length L.
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Time Varying Modifications

In FFT convolution using the STFT, the filter can be
changed each frame (h→ hm):

• Xm(ωk) = sampled DTFT (FFT) of mth input frame

• Hm(ωk) = time varying spectral modification

• Ym(ωk) = Xm(ωk)Hm(ωk) = mth output frame

• ωk = 2πk/N = kth spectral sample

• N = FFT length

•M = window w length: xm(n) = x(n)w(n−m)

• L = max length of FIR filter hm applied to each frame

• N >= M + L− 1 to avoid time aliasing in ym
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Using Hm in our OLA formulation with a hop size R = 1
results in:

y(n) =

∞∑

m=−∞

ym(n)

=

∞∑

m=−∞

1

N

N−1∑

k=0

Xm(ωk)Hm(ωk)e
jωkn

=

∞∑

m=−∞

1

N

N−1∑

k=0

[
∞∑

l=−∞

x(l)w(l −m)e−jωkl

]

Hm(ωk)e
jωkn

=

∞∑

l=−∞

x(l)

∞∑

m=−∞

w(l −m)
1

N

N−1∑

k=0

Hm(ωk)e
jωk(n−l)

=

∞∑

l=−∞

x(l)

∞∑

m=−∞

w(l −m)hm(n− l)

Letting r
∆
= n− l ⇒ l = n− r results in:

y(n) =

∞∑

r=−∞

x(n− r)

∞∑

m=−∞

hm(r)w(n− r −m)
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Let’s examine

∞∑

m=−∞

hm(r)w(n− r −m):

• hm(r) describes the time variation of the rth tap of
the time-varying FIR filter

•
∑∞

m=−∞ hm(r)w[(n− r)−m] = [h(·)(r) ∗ w](n− r)
is a filtered version of the rth tap hm(r). It is
lowpass-filtered by w and delayed by r samples.

• Denote the rth time-varying, lowpass-filtered,
delayed-by-r filter tap by ĥw

n−r(r). This can be
interpreted as the weighting in the output at time r
of an impulse entering the time-varying filter at time
n− r.

Using this, we get

y(n) =

∞∑

r=−∞

x(n− r)ĥw
n−r(r) ( = x ∗ ĥw if LTI)

= x(n)ĥw
n (0)

+x(n− 1)ĥw
n−1(1) + x(n− 2)ĥw

n−2(2) + · · ·

+x(n + 1)ĥw
n+1(−1) + x(n + 2)ĥw

n+2(−2) + · · ·

This is a superposition sum for an arbitrary linear,
time-varying filter ĥw

n−r(r) = [h(·)(r) ∗ w](n− r).
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Block Diagram Interpretation

Assuming ĥw is causal gives

y(n) =

∞∑

r=0

x(n− r)ĥw
n−r(r)

= x(n)ĥw
n (0) + x(n− 1)ĥw

n−1(1) + x(n− 2)ĥw
n−2(2) + · · ·

This is depicted in the following diagram:

z−1z−1z−1

hn(0) hn−1(1) hn−Oh
(Oh)

Σ

www

y(n)

• hm(l) = FIR filter tap l at time m

• Each tap is lowpass filtered by the FFT window w

• The window thus enforces bandlimiting of the filter
taps (see the text for further details)
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Weighted Overlap Add

In the weighted overlap add (WOLA) method, we apply a
second window after the inverse DFT. Such a window
can be called a “synthesis window”, “post-window”, or
simply “output window,” as opposed to the “analysis
window”, “pre-window”, or “input window” we have been
using up to now, prior to the FFT.

Synthesis windows are important in compression
applications to minimize “blocking effects,” since spectral
coding error is thereby “faded out” at the frame
boundaries, preventing audible discontinuities.

42

Weighted OverLap Add (WOLA) Procedure

The sequence of operations in a WOLA processor can be
expressed as follows:

1. Extract the mth windowed frame of data
xm(n) = x(n)w(n−mR), n = m, . . . ,m +N − 1
(assuming a length M ≤ N causal window w and
hop size R).

2. Take an FFT of the mth frame translated to time
zero, x̃m(n) = xm(n +mR), to produce the mth
spectral frame X̃m(ωk), k = 0, . . . , N − 1.

3. Process X̃m(ωk) as desired to produce Ỹm(ωk).

4. Inverse FFT Ỹm to produce ỹm(n), n = 0, . . . , N − 1.

5. Apply a synthesis window f (n) to ỹm(n) to yield a
weighted output frame ỹfm(n) = ỹm(n)f (n),
n = 0, . . . , N − 1.

6. Translate the mth output frame to time mR as
yfm(n) = ỹfm(n−mR) and add to the accumulated
output signal y(n).

• The overlap-add method is obtained from the above
procedure by deleting step 5.
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• To obtain perfect reconstruction in the absence of
spectral modifications, we require

x(n) =

∞∑

m=−∞

x(n)w(n−mR)f (n−mR)

= x(n)

∞∑

m=−∞

w(n−mR)f (n−mR)

which is true if and only if
∑

m

w(n−mR)f (n−mR) = 1
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When to Use Weighted Overlap-Add

• Synthesis windows are not used in simple FFT
convolution processors using the OLA method, since
the input frames are supposed to be expanded by the
convolution, and the synthesis window would “pinch
off” the “filter ringing”, yielding the wrong results.

• Synthesis windows can be used in conjunction with
spectral modifications made by means of the “filter
bank summation” (FBS) method, which is the subject
of the next lecture.

• Synthesis windows are appropriate for erstwhile
“instantaneous” spectral modifications, such as

– spectral quantization (compression),

– frequency scaling (time-scale modification), or

– “memoryless” spectral nonlinearities.

In other words, whenever samples outside of the original
signal time frame are considered processing artifacts, use
of a synthesis window will eliminate them.
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Choice of WOLA Window

The synthesis window in weighted overlap-add is typically
chosen to be the same as the input window, in which
case the COLA constraint becomes

∑

m

w2(n−mR) = constant

We can say that R-shifts of the window w in the time
domain are power complementary (power-partition of
unity), whereas for OLA they were amplitude
complementary.
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WOLA Window Construction

A trivial way to construct useful windows for WOLA is to
take the square root of any good OLA window. This
works for all non-negative OLA windows (which includes
essentially all typical windows).

• For example, the “root-Hann window” can be defined
for odd M by

w(n) = wR(n)

√

1

2
+
1

2
cos(2πn/M)

= wR(n) cos(πn/M), n = −
M − 1

2
, . . . ,

M − 1

2

• Notice that the root-Hann window is essentially the
same thing as the “MLT Sine Window” described in
the lecture on FFT windows.

• Similarly, we can define the “root-Hamming”,
“root-Blackman”, and other windows for perfect
reconstruction in the weighted overlap-add context.
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WOLA Applications

Nonlinear “instantaneous” FFT processors such as

• perceptual audio coders,

• time-scale modification, or

• pitch-shift (frequency-scaling)

are normally based on the Weighted Overlap-Add
(WOLA) method for short-time Fourier analysis,
modification, and resynthesis because

• the synthesis window (applied after the inverse FFT
and prior to overlap-add reconstruction) helps to
suppress artifacts caused by nonlinear spectral
modifications, and

• filtering effects are not desired, so no provision for
“ringing” in the time domain is needed.
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Poisson Summation Formula Derivation

First consider the summation of N complex exponentials:

x(n)
∆
=

1

N

N−1∑

k=0

ejωkn =

{
1 n = 0 (mod N)
0 elsewhere

= IDFTN,n(1 · · · 1) = δ(n) + δ(n−N) + δ(n +N) + · ·

where ωk
∆
= 2πk/N .

∑

l

δ(n− lN)

−2N −N 0 N
n

2N

1

Setting N = R (the FFT hop size) gives

∑

m

δ(n−mR) =
1

R

R−1∑

k=0

ejωkn

where ωk
∆
= 2πk/R (harmonics of the frame rate).
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Let us now consider these equivalent signals as inputs to
an LTI system, with an impulse response given by w(n),
and frequency response equal to W (ω).

w(n)

W (ω)

∑

l

δ(n− lR)

1

R

∑

k

ejωkn

∑

l

w(n− lR)

1

R

∑

k

W (ωk)e
jωkn

Time

Frequency

Looking across the top of the above figure, for the case
of input signal x(n) =

∑

m δ(n−mR) we have:

y(n) =
∑

m

w(n−mR)

and looking across the bottom of the above figure, for
the case of input signal 1

R

∑R−1
k=0 e

jωkn, we have:

y(n) =
1

R

R−1∑

k=0

W (ωk)e
jωkn

Since the inputs were equal, the corresponding outputs
must be equal too. This derives the Poisson Summation
Formula:
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Poisson Summation Formula

∑

m

w(n−mR)

︸ ︷︷ ︸

AliasR(w)

=
1

R

R−1∑

k=0

W (ωk)e
jωkn

︸ ︷︷ ︸

DFT
−1
R

[

Sample2π
R
(W )

]

ωk
∆
=

2πk

R

• Dual of the sampling theorem

• COLA ≡ W (ωk) = 0, |k| = 1, 2, . . . , R− 1

• In other words, constant overlap-add of w at hop-size
R happens if and only if the window transform W is
zero at the frame rate 2π/R and all its harmonics.

• Notation:

w ∈ Cola(R) ⇔ W ∈ Nyquist(2π/R)

The “Nyquist(ΩR)” property for a function W simply
means that W is zero at all nonzero multiples of ΩR

(all harmonics of the frame rate here).

When the COLA condition is met, we have, by the PSF,

∑

m

w(n−mR) =
1

R
W (0)
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Strong COLA

An overly strong (but sufficient) condition is to bandlimit
W (ω) consistent with downsampling by R:

W (ω) = 0, |ω| ≥ π/R (sufficient for COLA)

Weak COLA

The necessary and sufficient condition for w ∈ Cola(R)
is again zeros at all frame-rate harmonics:

W (ωk) = 0, ωk = k
2π

R
, k = ±1,±2, . . . (nec. & suff.)
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PSF Dual and Graphical Equalizers

PSF:

w ∈ Cola(R) ⇔ W ∈ Nyquist(2π/R)

PSF Dual:

W ∈ Cola(2π/N) ⇔ w ∈ Nyquist(N)

Interpretation:

• N = number of (complex) filters in a filter bank

• Passbands uniformly distributed around the unit circle

• Typical implementation: FFT filter bank

Let W (ejωT ) = “dc channel” of filter bank. Then
W ∈ Cola(2π/N) means

S(ω) =

N−1∑

k=0

W
(

ej(ω−ωk)T
)

= constant

where ωkT
∆
= kΩN

∆
= k · 2π/N .

In the time domain, w ∈ Nyquist(N) means that w is
zero at all nonzero integer multiples of N :

w(n) = 0, n = ±N,±2N,±3N, . . .
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Ideal Graphical Equalizers

PSF Dual:

W ∈ Cola(2π/N) ⇔ w ∈ Nyquist(N)

• N -channel equalizer filter banks can be made using
bandpass filters having zero-crossings at multiples of
N samples

• All such filter banks sum to a constant frequency
response when channel gains are equal

• The PSF dual can be taken as the basis for the
Filter-Bank Summation (FBS) interpretation of the
short-time Fourier transform

• The FBS is precisely the Fourier dual of the
OverLap-Add (OLA) interpretation
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