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Lumped vs. Distributed Systems

• A lumped system is one in which the dependent
variables of interest are a function of time alone. In
general, this will mean solving a set of ordinary
differential equations (ODEs)

• A distributed system is one in which all dependent
variables are functions of time and one or more
spatial variables. In this case, we will be solving
partial differential equations (PDEs)

For example, consider the following two systems:

y(x,t) 

x=0 x=L x0 xN x1 . . . xk . . . 

yk(t) 

Distributed Lumped 

• The first system is a distributed system, consisting of
an infinitely thin string, supported at both ends; the
dependent variable, the vertical position of the string
y(x, t) is indexed continuously in both space and time.
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• The second system, a series of “beads” connected by
massless string segments, constrained to move
vertically, can be thought of as a lumped system,
perhaps an approximation to the continuous string.

• For electrical systems, consider the difference between
a lumped RLC network and a transmission line

v(x,t) 

. . . 

. . . 

v(t) 

Distributed Lumped 

• The importance of lumped approximations to
distributed systems will become obvious later,
especially for waveguide-based physical modeling,
because it enables one to cut computational costs by
solving ODEs at a few points, rather than a full PDE
(generally much more costly)
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Discretization

Problem: Given

• Integro-differential equations (DEs)

• Boundary conditions

Find:

1. Numerical solution for system motion
(classical problem), or

2. Real-time computational model :

• Solves DEs with a computational structure

• Input and control signals effectively
“change the boundary conditions”

This course is concerned primarily with the second case,
although the first case also arises when verifying acoustic
theory or a particular computational model.
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Classical Solutions

• Numerical Integration via Finite Differences

• Finite Element Method (FEM)

• Boundary Element Method (BEM)

• Ray Tracing

• Many others, depending on problem

• Literature vast
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Computational Physical Models Suitable as

Real-Time Synthesis Models

• Digital filters from Finite Differences

• Wave Digital Filters (WDF)

• Digital Waveguide Mesh (DWM) for

All are special cases of finite difference schemes.
All are digital filters of one type or another.

Historical examples:

• Kelly-Lochbaum vocal-tract model

• Linear Prediction voice models

• Ladder and Lattice digital filter structures

• Formant filter-bank speech model
(“modal representation”)

• Digital waveguide models
(winds, strings, voice, membranes, ...)
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Signal Processing Approach

• Every linear differential equation (with constant
coefficients) gives rise to a linear, time-invariant (LTI)
“network” or “medium”

• LTI media are characterized by their frequency
response H(ejω) which breaks down into

– Attenuation versus frequency:

G(ω) =
∣

∣H(ejω)
∣

∣

– Time-delay versus frequency:

P (ω) = −∠H(ejω)/ω

for each input-output pair

• Typical Procedure: Design an optimal digital filter
to give desired frequency response

• In multi-input, multi-output cases, a matrix frequency
response applies

• Often the filter structure can be chosen to maintain a
physical interpretation of all state variables

7

Finite Differences: Some basics

Suppose we begin with the simplest possible differential
equation, that relating current and voltage in an inductor:

v(t) = L
di

dt

We assume that one of the quantities, say i is provided
by some source. We need to discretize this continuous
time equation. First sample i at regular intervals nT (in
the simplest case), to obtain a sequence in, and assume
that we will be obtaining a voltage sequence vn from it.
There are many ways of approximating the differentiation
operator;

• set di
dt ≃ (in − in−1)/T . This yields the equation:

vn = (L/T )(in − in−1)

This is probably the simplest way of discretizing a
derivative, and is called a backwards difference.

• a slightly more sophisticated discretization involves
rewriting the equation for the inductor in the
following way:

i(t) =
1

L

(
∫ t

0

v(t′)dt′
)

+ i0
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and thus

i(nT ) =
1

L

(
∫ nT

0

v(t′)dt′
)

+ i0

=
1

L

(

∫ (n−1)T

0

v(t′)dt′

)

+ i0 +
1

L

∫ nT

(n−1)T

v(t′)dt′

= i ((n− 1)T ) +
1

L

∫ nT

(n−1)T

v(t′)dt′

≃ i ((n− 1)T ) +
T

2L
(v ((n− 1)T ) + v(nT ))

yielding the scheme:

vn = −vn−1 +
2L

T
(in − in−1)

• This is called the trapezoid rule of numerical
integration (or differentiation), and it can be seen as
the basis for the WDF approach to filtering and
numerical integration.

• There are many other ways of performing this
discretization; in general we can imagine writing a
general scheme:

∞
∑

k=0

akvn−k =

∞
∑

k=0

bkin−k
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which in some sense behaves like the original
continuous time equation.

Accuracy

Suppose we take the backward-difference approximation
vn = (L/T )(in − in−1), and expand in−1 in Taylor series
about in. This yields:

vn = (L/T )

(

in −

(

in − T
di

dt

∣

∣

∣

∣

nT

+O(T 2)

))

= L
di

dt

∣

∣

∣

∣

nT

+O(T )

So the difference scheme approximates the continuous
time equation to an accuracy that depends on T , the
step size. Thus we expect that the discretization will do a
better job as T gets small.

Performing the same analysis for the trapezoid rule yields:

vn = L
di

dt

∣

∣

∣

∣

nT

+O(T 2)

So we say that the trapezoid rule is second-order
accurate in T .

• In general, the more accurate a difference scheme, the
more information from neighboring grid points it will
require.
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Frequency Domain Interpretation

The equation for the inductor, assuming zero initial
conditions, transforms to

V (s) = LsI(s)

where s is the complex frequency variable. Taking z
transforms of the sequences v and i in the
backward-difference scheme yields:

V (z−1) = L
1− z−1

T
I(z−1)

Thus we can think of our discretized scheme as one
obtained under the mapping s → 1−z−1

T . So here we
are mapping from the s plane to the z plane. The
following figure illustrates where real continuous time
frequencies (the jω axis) are mapped:

jω 

s plane 

 
unit 
circle 

image of  

jω axis 
z plane 

• dc (s = 0) mapped to dc (z = 1)
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• infinite frequency mapped to (z = 0)

We can write the scheme for the trapezoid rule as follows:

V (z−1) =
2L

T

1− z−1

1 + z−1
I(z−1)

• the mapping s → 2
T
1−z−1

1+z−1 maps all real frequencies to
real frequencies uniquely. In partcular dc→dc, and
infinite frequency maps to z = −1.

One way of examining the frequency mapping more

closely is by looking at 2
T
1−z−1

1+z−1 on the unit circle, i.e.,

where z = ejωT . This yields:

2

T

1− e−jωT

1 + e−jωT
=

2j

T
tan(ωT/2)

• notice in particular the behaviour of the mapping near
dc (ω = 0):

2j

T
tan(ωT/2) ≃ jω +O(T 3)

where, since tan(θ) is odd, there are no even-order
terms in its series expansion. Thus, the trapezoid rule
is a second-order accurate approximation to a
derivative, in the limit of small T (i.e., near dc).
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More General Differential Equations

A more general linear constant coefficient differential
equation can be written as:

N
∑

k=0

ak
dkv

dtk
=

M
∑

k=0

bk
dki

dtk

or, in the frequency domain, assuming zero initial
conditions,

N
∑

k=0

aks
kV (s) =

M
∑

k=0

bks
kI(s)

We can define a transfer-function relationship as follows:

Z(s)
∆
=

V (s)

I(s)
=

b0 + b1s + b2s
2 + · · · + bMsM

1 + a1s + a2s2 + · · · + aNsN

where we have normalized a0 6= 0 to 1. Note that Z(s) is
a rational function of s of order max(N,M).

If i(t) and v(t) are measured at the same point, then
Z(s) is a driving point impedance, as depicted below:

i(t) 

Z(s) v(t) 
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If the circuit (or mechanical system) is physically passive,
then Z(s) must be positive real
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Distributed Example: 1-D wave
equation, solution by FDA approach

Suppose we want to simulate one direction in an acoustic
space in which the air is described by the second-order
wave equation

∂2u

∂2t
= c2

∂2u

∂2x
where u(x, t) is particle velocity of the air relative to
equilibrium.

• This is the familiar 1-D wave equation, with wave
speed given by

c =

√

γP0

ρ0

where

– γ = 1.4 for air (“adiabatic gas constant”),

– P0 is ambient pressure, and

– ρ0 is mass density.

• The same equation holds also for pressure p(x, t) and
density ρ(x, t), all with the same wave speed c.

Let’s “digitize” this wave equation to create a finite
difference scheme (FDS).
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Second-Order Finite Difference Scheme

The simplest, and traditional way of discretizing the 1-D
wave equation is by replacing the second derivatives by
second order differences:

∂2u

∂t2

∣

∣

∣

∣

x=k∆,t=nT

≃
un−1
k − 2unk + un+1

k

T 2

∂2u

∂x2

∣

∣

∣

∣

x=k∆,t=nT

≃
unk−1 − 2unk + unk+1

∆2

where unk is defined as u(k∆, nT ). Here we have sampled
the time-space plane in a uniform grid, with a timestep of
T and a space step of ∆. The unk are the grid variables
here. Now, through substitution, the wave equation
becomes:

un−1
k − 2unk + un+1

k =
c2T 2

∆2
(unk−1 − 2unk + unk+1)

• Note that if we choose T/∆ = 1/c, the equation
reduces further to:

un+1
k = unk−1 + unk+1 − un−1

k

Let’s examine this recursion on the time/space grid,
assuming for the moment no boundary conditions:
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Time-Space Grid of Second-Order FDS

un+1
k = unk−1 + unk+1 − un−1

k

 n+1 

n 

n-1 

n-2 

m  m+1 m-1 

spatial step 

time 

 

current point 

• Grid variable at “current” point depends on value at
two previous time steps (a second order scheme in
time). We thus need to specify initial data for all m
at times n = 0 and n = 1.

• Grid variable at “current” point depends on values at
adjacent locations on the string (at previous time).

• Difference scheme is explicit (thus parallelizable);
that is, each grid variable at time n + 1 depends only
on grid variables at previous time instants. This is a
very desirable property.
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A Peek at Stability of Finite Difference Schemes

Let’s look again at the difference scheme we derived for
the 1-D wave eq, with the special time/space step
c = T/∆:

un+1
k = unk−1 + unk+1 − un−1

k

The velocity sample u(k, n) is a two-dimensional
sequence with a time index and a spatial coordinate
index.

Suppose we now take the DTFT with respect to the
spatial index k:

∞
∑

k=−∞

un+1
k e−jωk∆ =

∞
∑

k=−∞

(unk−1 + unk+1 − un−1
k )e−jωk∆

or

Un+1(ω) = (e−jω∆ + ejω∆)Un(ω)− Un−1(ω)

where here Un(ω) is the spatial spectrum of the solution
at time n, and ω is the spatial frequency variable. We
can also write this in vector form as:

[

Un+1(ω)

Un(ω)

]

=

[

2 cosω∆ −1

1 0

] [

Un(ω)

Un−1(ω)

]

Note that the state of the system is completely
determined by Un(·) and Un−1(·).
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Von Neumann Analysis

The matrix

A
∆
=

[

2 cosω∆ −1

1 0

]

can be called the state transition matrix corresponding to
the state-space description determined by the choice of
state vector

x(n)
∆
=

[

Un(ω)

Un−1(ω)

]

and the state update can be written more simply in vector
form as x(n + 1) = Ax(n). Note that the state-space
description is indexed by frequency ω, regarded as fixed.

• From linear systems theory, we know that such a
system will be asymptotically stable if the eigenvalues
λ of the matrix A are both less than 1 in magnitude.

• It is easy to show that the eigenvalues of A are
λ+ = ejω∆ and λ− = e−jω∆. Thus, |λ±(ω)| = 1, ∀ω.

• While we are not guaranteed asymptotic stability,
|λ(ω)| = 1 does imply that, in some sense, our
solution is not getting larger with time at any spatial
frequency. This can be defined as marginal stability.
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• Note that we should expect the eigenvalues to have
unit modulus, because the wave equation we started
with corresponds to a lossless medium (an ideal gas).
The original PDEs were derived without any loss
mechanisms.

• A lossless discrete-time simulation can be highly
desirable, particularly as a modeling starting point.

• This kind of “Von Neumann analysis” can be applied
to any constant-coefficient FDS which is linear in its
spatial directions.
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Problems with FDS

• Convergence: Since the approximations to the
second derivatives we used were second order
accurate (in T and ∆), the scheme as a whole is
accurate as O(T 2,∆2).

• Making an FDS more accurate (i.e., converge faster)
generally requires a recursion involving more grid
variables.

• An FDS for a higher order PDE also generally involves
more grid variables.

• From a signal processing point of view, a more
accurate simulation of an LTI medium is obtained by
increasing the order of the filter.

• Note that an optimal filter design yields FDS
coefficients which may be translated back to
differential equation coefficients (which may or may
not have physical meaning).

• Stability becomes more difficult to ensure in general
(need to check eigenvalue magnitudes). The addition
of boundary conditions makes this even more difficult.
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• A good finite difference scheme may not be explicit,
and hence may require matrix inversions (generally
sparse).

For example, the dependence diagram below represents
an implicit scheme: We cannot calculate the grid
variables at the current timestep as weighted sums of grid
variables at previous instants.

 n+1 

n 

n-1 

n-2 

m  m+1 m-1 

spatial step 

time 

 

current point 
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