Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Timoshenko's Model (1921)


\begin{picture}(275,200)
\par
% graphpaper(0,0)(275,200)
\put(0,0){\epsfig{file=eps/timopic.eps}}
\put(105,160){{$\psi$}}
\put(155,160){{$y^{+}$}}
\end{picture}

Timoshenko's Equations


\begin{picture}(400,350)
% graphpaper(0,0)(400,350)
\put(0,0){\epsfig{file = eps/timoslice.eps}}
\put(80,320){\normalsize {$m(x)$}}
\put(330,300){\normalsize {$m(x+dx)$}}
\put(60,210){\normalsize {$q(x)$}}
\put(250,50){\normalsize {$q(x+dx)$}}
\put(120,60){\normalsize {$w(x)$}}
\put(410,100){\normalsize {$\psi(x)$}}
\put(130,0){\normalsize {$dx$}}
\end{picture}

Timoshenko's Equations Cont'd.

System:

$\displaystyle \begin{bmatrix}
\rho A&0&0&0\\
0&\frac{1}{A\kappa G}&0&0\\
0&0&\rho I&0\\
0&0&0&\frac{1}{EI}\\
\end{bmatrix}\frac{\partial}{\partial t}\begin{bmatrix}
v\\
q\\
\omega\\
m\\
\end{bmatrix}$ $\displaystyle =$ $\displaystyle \begin{bmatrix}
0&1&0&0\\
1&0&0&0\\
0&0&0&1\\
0&0&1&0\\
\end{bmatrix}\frac{\partial}{\partial x}\begin{bmatrix}
v\\
q\\
\omega\\
m\\
\end{bmatrix}$  
  $\displaystyle +$ $\displaystyle \begin{bmatrix}
0&0&0&0\\
0&0&-1&0\\
0&1&0&0\\
0&0&0&0\\
\end{bmatrix}\begin{bmatrix}
v\\
q\\
\omega\\
m\\
\end{bmatrix}$  

with

$\displaystyle v=\frac{\partial w}{\partial t}\hspace{0.3in} \omega=\frac{\partial \psi}{\partial t}\hspace{0.3in} m = EI\frac{\partial \psi}{\partial x}\hspace{0.3in} q = A\kappa G\left(\frac{\partial w}{\partial x}-\psi\right)$    

Networks for Timoshenko's Equations


\begin{picture}(600,700)
\par
\put(-150,-200){\epsfig{file=eps/timowgpic.eps}}
\end{picture}

Multidimensional Circuit and Wave Digital Network for Timoshenko's Equations


\begin{picture}(600,650)
\par
\put(-150,-200){\epsfig{file=eps/timowdpic.eps,width=4in}}
\end{picture}

Stability Condition for Waveguide Network for Timoshenko System

The maximum speeds of the Timoshenko Beam are

$\displaystyle c_{1,max} = \max_{x}\sqrt{\frac{G\kappa}{\rho}}\hspace{0.3in}c_{2,max} = \max_{x}\sqrt{\frac{E}{\rho}}$    

Stability conditions for the staggered waveguide mesh (TLM) are:
$\displaystyle \Delta$ $\displaystyle \geq$ $\displaystyle T {\rm max}\left(\max_{x = \Delta i}\sqrt{\frac{1}{(\frac{\rho}{G\kappa})-\frac{T}{2(\rho A)}}},\max_{x=\Delta i}\sqrt{\frac{EI}{\rho I - \frac{T}{2}}}\right)$  

Also: A maximum permissible time-step (independent of $ \Delta$ ) Aproaches CFL bound as $ T\rightarrow 0$ .


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download Meshes.pdf
Download Meshes_2up.pdf
Download Meshes_4up.pdf

``Wave Digital Filters and Waveguide Networks for Numerical Integration of Time-Dependent PDEs'', by Stefan Bilbao<bilbao@ccrma.stanford.edu>, (From CCRMA DSP Seminar Presentation, Music 423).
Copyright © 2019-02-05 by Stefan Bilbao<bilbao@ccrma.stanford.edu>
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]