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Horn Modeling

Bore Profile Reconstruction from Measured
Trumpet Reflectance
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e Inverse scattering applied to pulse-reflectometry data
to fit piecewise-cylindrical model (like LPC model)

e Bore profile reconstruction is reasonable up to bell

The bell is not physically equivalent to a
piecewise-cylindrical acoustic tube, due to

— complex radiation impedance,

— conversion to higher order transverse modes



Trumpet-Bell Impulse Response Computed from
Estimated Piecewise-Cylindrical Model

Bell Reflection Impulse Response
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e From pulse reflectometry on trumpet with no
mouthpiece

e Bore profile is reconstructed, smoothed, and
segmented

e Impulse response of “bell segment” = “ideal filter”

o At f, = 44.1 kHz, filter length is =~ 400 to 600
samples



e A length 400 FIR bell filter is too expensive!
e Convert to |IR? Hard because

— Phase (resonance tunings) must be preserved
— Magnitude (resonance Q) must be preserved
— Rise time ~ 150 samples

— Phase-sensitive |IR design methods perform poorly



FIR to IR Conversion Attempts

Bell Impulse Response (dB) Before
Truncation

Log-Magnitude of Input Signal (for Evaluating Truncation Point)
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e 561 samples gives cut-off around -60 dB relative to
maximum

e This length 561 FIR filter can be reduced to a
lower-order |IR filter by minimizing some norm of the
impulse-response error



e Hankel norm minimization should always work in
theory

Hankel Norm Method

Eigenvalues of Hankel Matrix (dB)
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Largest Eigenvalues of Hankel Matrix (dB)
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Order 15 Hankel-Norm IIR Fit to Length 561 FIR
Measured Trumpet-Bell Reflectance
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Order 15 Hankel fit to first 561 samples
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e Order 15 is a “sweet spot” in the eigenvalues plot

e Hankel Norm is the only phase-sensitive |IR error
norm we know which can always be reliably minimized

in principle



e Norm is sensitive to /inear magnitude error, not dB
e This bell filter is too “bright” and fit is generally poor

e |nitial time-domain match is reasonable, but it can't
“hold on” until the main reflection

e Numerical failure is a likely (in Matlab/Pentiuml|

doubles)



Order 8 Hankel-Norm IIR Fit to Length 561 FIR

Amplitude

Magnitude (dB)

(Evidence of Numerical Failure in Previous

Example)

Order 8 Hankel fit to first 561 samples
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e Halving the order actually looks better ( “can't

happen")

e Error plot indicates numerical troubles here as well
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e An order P IIR filter is made using Pth eigenvector of
the 561 x 561 Hankel matrix (condition number =
51751075)

e Numerical failure occurs at the higher orders we need

e Slow rise time of impulse response causes “numerical
stress’ on all phase-sensitive IIR design methods
when the |IR order is much less than the rise time
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Order 10 Steiglitz-McBride L, Fit to a
Length 561 FIR Filter Model

Order 10 Steiglitz—McBride fit to first 561 samples
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e All poles concentrated at low frequencies
e Little attention to high frequencies

e Internal “equation-error’ weighting

e Numerical ill-conditioning warning printed by Matlab
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Group Delay (samples)
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Phase Delay (samples)
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Magnitude (dB)
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SM-10 Amplitude Response Fit

Magnitude Fit over Entire Nyquist Band
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Another Measured Trumpet Bell Reflectance
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Amplitude

Idea!

e Break up impulse response into exponential or
polynomial segments

e Exponential and polynomial impulse-responses can be
designed using Truncated IIR (TIIR) Filters

Bell Impulse Response Segmentation
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Amplitude

Four-Exponential Fit to
Estimated Trumpet-Bell Filter (Exp-4)

Time—Domain Fit with Four Offset—Exponential Segments
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Group Delay (samples)

Phase Delay (samples)

Exp-4 Group Delay Fit
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Amplitude

Amplitude Slope

Exp-4 Impulse Response Fit (Repeated)

Time—Domain Fit Using Four Offset Exponentials
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Two Exponentials Connected by a Cubic Spline
Measured Trumpet Data (Exp2-S3)

Response Segmentation
0.02 .

—_— segl

0.015

0.01 -

0.005 —

—0.005

—0.01

—0.015

—0.02

_0.025 I I I I I
o 50 100 150 200 250 300

Time (samples)

Exp2-S3 Slope Fit

22



10

—3

Time—Domain SLOPE Fit
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Exp2-S3 Group Delay Fit
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Two Exponentials Followed by a 6th-Order IIR
Filter Designed by Steiglitz McBride Algorithm

(Exp2-SM6)

Response Segmentation
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Exp2-SM6 Impulse Response Fit

Time—Domain Fit
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Exp2-SM6 Phase Response Fit
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Results for Measured Trumpet Data Using Two
Offset Exponentials and Two Biquads
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e Bell model filter complexity comparable to order 8-+

IR

e Offset exponentials were fit using fmins () in Matlab

e Two biquads were fit as a single fourth-order filter
using the Steiglitz-McBride algorithm (stmcb() in
Matlab)
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Measured Trumpet Bell Impulse Response
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Measured Trumpet Bell Amplitude Response
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Trumpet Bell Phase Delay Fit
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Comparison to Measurements

The next two pages of plots compare the measured
impulse response with that produced by the final digital
waveguide model consisting of a trumpet bore + bell
(but no mouthpiece).

e Comparison 1: two offset exponentials and two
biquads to model the bell impulse response

e Comparison 2: two offset exponentials and three
biquads to model the bell impulse response
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Measured Impulse Response
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Measured Impulse Response
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Piecewise Conical Acoustic Tube
Modeling

Simple Example: Cylinder with Conical Cap

Physical Outline of Cylinder and Cone:
—~< Ll =50cT

Ly=25¢T =

pi(®)

Digital Waveguide Model (DWM) for Pressure Waves:
[ > Delay(50) Delay(25)

pi(nT)/2

A

Delay(50)

Delay(25)

Reduced DWM for Maximum Computational Efficiency:

A > Delay(100) Delay(50) -
R(z)
p;(nD/2
v

- () <¢+&>

T(z) = (19090> (11__&"’12_1) — 1+ R(2)

99

where
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e Problem: Reflection filter R(z) and

transmission filter T'(z) are unstable (pole at
> =101/99)

e Overall system is passive = unstable pole is canceled
Implementation ldea

Apply TIIR “alternate and reset” idea
to the unstable conical subsystem

e Cone is not truly FIR = %4y replaces FIR length

e When cylinder is closed-ended, cone traveling-wave
components increase without bound = must switch
out and reset the entire cone assembly
(scattering-junction filter R(z) and cone's entire delay
line)

e According to simulations thus far, cylinder waves are
well behaved and do not need to be reset (no general
proof yet)

Basic Principle

Periodically reset any subsystem containing a
canceled unstable pole at intervals greater than or
equal to the tgy for that subsystem
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Interesting Paradox at DC

DC Steady State: Closed-End Cylinder

p(1) =p™ (1) + p"(1) =x (constant) p(t) =x (const)
x/2 x/2 x+d x+d
J > Delay(50) 0 Delay(25)
p(nT)/2 = x/2 p(nT) =x -1 1 pnD=x -1
- Del Delay(2
o 2y(0) /2 0 = LDelat ) -d
e [?(1) = —1 (dc response of reflection filter inverts)

e T'(1) = 0 (dc does not transmit through the junction)

e Physically obvious dc solution (constant pressure
offset) is not possible in either the cone or the
cylinder model!

e Simulated impulse responses agree with the literature

e A final constant dc offset /s observed in the
simulations
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Solution to Paradox

e |t turns out the reflection transfer function looking
into the cone from the cylinder has two poles and two
zeros at dc

e The dc poles and zeros cancel and leave a dc cone
reflectance equal to +1 (the physically obvious
answer)

e We can't just set the reflection filter to its dc
equivalent to figure out the dc behavior of the overall
model

e Instead, a more careful limit must be taken

In the s plane, the conical cap pressure reflectance, seen
from the cylinder, can be derived to be

14+ R(s)(1+ 2st,
(o) & Lt RS+ 25t
2st, — 1 — R(s)
where t, is the time (in seconds) to propagate across the
cone, and

R(s) = —e
is the reflectance of the cone at its entrance. We have

lim R(s) = —1

s—0

lim H(s) = +1

s—0
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Truncated Infinite Impulse Response
(TIIR) Digital Filters

An FIR filter can be constructed as the difference of two
IR filters:

Infinite Impulse Response (IIR) = Delayed and Scaled IIR - Truncated IIR = FIR

1 2 3 4 5 1 2 3 1 5 1 2 3
Time (sec) t Time (sec) t Time (sec)

General FIR filter
o Coefficients: {hq,...,hn}

e Implementation (convolution):

y(n) = (h*xx)( thajn—

e Transfer function:
HFIR<Z> ho + hlz_l + ...+ hNZ_N
2 NCO(2),

44
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where C'(z) is the N-th degree polynomial in z formed by
the hy

General P-th order IIR filter

e Difference equation
P

y(n):—Zakyn— +Zbgajn—

k=1
e Transfer function
A by + blz_l + ...+ pr_P
Hygr(z) = — —
l+a1z7t+... +apz
A bQZP + blzp_l + ...+ bp
Pyl tap

A B(z)
A(z)
2 h0—|—h12_1—|—h22_2‘|—...,
where
A(z) 2 P ha" N tap (monic)
A

bozl + b2+ bp
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TIIR Construction: A One-Pole Example

Consider an FIR filter having a truncated geometric
sequence {hg, hop, . .., hop™} as an impulse response.
This filter has the same impulse response for the first
N + 1 terms as the one-pole IR filter with transfer
function

h
Hyg(z) = - ;Z_

Subtracting off the tail of the impulse response gives

-
HFH{(Z) = ho+ hopz_l + e T h()pNZ_N
— {h0+h0p2_1_|_... }

_ {hopN+1Z_(N+1) + hgpNT (V) L }

e ALy ~(V+1) ho
1 —pz—1 1 —pz—1
1 — pN+L —(N+1)
S :
I —pz—

The time-domain recursion for this filter is

yln| = Z hop*zn — K|
k=0

= pyln — 1] + ho (z[n] — p" a[n — (N + 1)])
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Complexity Notes

e Direct FIR filter implementation requires N + 1
multiplies and N adds

e TIIR implementation requires 3 multiplies and 2 adds,
independent of NV

e No savings in memory

Note that there is a pole-zero cancellation in the TIIR
transfer function
l—p

1 —pz1

N+1,—(N+1)

Z

= ho+hopz T+ +hept 27

e If |p| < 1, no problem since the canceled pole is stable

e If |p| > 1, imperfect pole-zero cancellation due to
numerical rounding leads to exponentially growing
round-off error

Basic Idea: Since the overall TIIR filter is FIR(N),
alternate between two instances of each unstable
one-pole, starting each new one from the zero state NV
samples before it is actually used. (Apparently first
suggested by T. Fam at Asilomar-'87 for the case of
distinct poles.)
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Extension to Higher-Order TIIR Sequences

We can extend this idea from the one-pole case to any

rational filter H(z) = B(z)/A(z). The general procedure
is to find the “tail filter” H{z(2) and subtract it off:

Hyr(z) = Hir(z) — Hip(2)

Multiply Hyr(2) by 2% to obtain

ZNHHR<Z) = h()ZN + -+ hy_ 12+ hy
‘l_ h]\/'_|_12—1 ‘|_ hN+QZ_2 —|_ cte

= c<z><+>HﬁR<z> .
B NB(z A . B'(z
O R e

e B'(z) is the unique remainder after dividing 2" B(2)
by A(z) using “synthetic division”
(VN B(z) = B'(2) (mod A(z)))

e We may assume Deg {B’(2)} = Deg {A(2)} — 1

e B’(z) gives us our desired “tail filter” for forming
Hpir = Hir — H{jg:

HI,IR<Z) — A(Z)

48



Higher-Order TIIR Filters

We have

Hpir(z) = Hur(z) — 2~V H{jp(2)
B(z) — 2V B'(2)
A(z)

The corresponding difference equation is

yln| = — Z apyln — k] + Z bex[n — (]
k=1 (=0
— Zb;nx[n—m— (N +1)]

Since the denominators of Hyr(2) and H{g(2) are the
same, the dynamics (poles) can be shared:

A2 > y(n)
B(z) 2 < B’(z)

N

x(n) Delay Line
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Complexity and Storage-Cost

o (2) = B(z) —AZ> B/(z)

N = FIR order and let P = A(z) order (#poles)

e The computational cost of the general truncated P-th
order IIR system is 3P + 1 multiplies and 3P — 2
adds, independent of NV

e Net computational savings is achieved when N > 3P

Storage Requirements

e P output samples for the IR feedback dynamics A(z)
e N input samples of the FIR filter (main delay line)

e P input samples for B(z) (normally in delay line)

e P input samples for B’(z) (also possibly in delay line)

Thus, we need a total of at least NV + P input delay
samples, of which only 2P are accessed, and P output
delay samples. This is between P and 2P more than a
direct FIR implementation.
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Example

We wish to truncate the impulse response of
B BT (z) B 1
AT (z) 1 —-1.927140.9822

after N = 300 samples to obtain a length 301 FIR filter
Hyg(2)

H™(z)

Steps:

1. Perform synthetic division on 2°"’B™(z2) by A(2) to
obtain the remainder

B'*(z) = —0.162126z + 0.139770

2. Form the TIIR filter as

Hin(:) = S bt — B*(z) 2@) B (2)
k=0

1+ 0.162126 27299 — 0.139770 z—3YW
1 —1.92714+0.9822
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Impulse Response of TIIR Implementation
Without Resets

5
4t i
3<, -
247 -
o l
=]
= \
=0
£
-1H .
-2H -
_3—7 -
4+ 4
_50 500 1000 1500 2000
Time (Samples)
50
off J
50 .
m
=-100f 1
[<b]
e
2
2150} i .
<<
200 s
_3000 500 1000 1500 2000

Time (Samples)
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e At time n = 301, the tail of the response is
subtracted off, and the impulse-response magnitude

drops by about
115 dB

e Due to quantization errors, there is a residual response

e Poles are all stable, so error decays
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Impulse Response of TIIR Implementation With
Resets

Amplitude
o

0 500 1000 1500 2000
Time (Samples)

Amplitude (dB)

SROOI

T
1

_3000 500 1000 1500 2000

Time (Samples)
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e Again, impulse-response tail is subtracted off at time
n = 301, giving around 115 dB attenuation

e Additionally, state variables are cleared every 300
samples

e Residual response completely canceled at time
n = 600

e System has truly finite memory
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Unstable Example

To form a linear phase TIIR filter based on the previous
example, we need also the “flipped” impulse response
generated by

—0.1397702% + 0.162126z — z 3%

0.9822 —1.92 + 1
—0.1426222% 4 0.165435z — 1.020408z 3%

2?2 — 1.9387762z + 1.020408

where the last equation is normalized by 0.98 to make the
denominator monic.

Hpp(z) =

This system has two unstable hidden modes.
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Impulse Response Without Resets

Amplitude
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e Tail is canceled with about 125 dB attenuation

e Due to the unstable canceled poles, quantization
noise grows without bound

e By time 1500 samples, the quantization noise
dominates

e (Arithmetic = double-precision floating point with
single-precision state variables)
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Impulse Response of TIIR Implementation With

Amplitude (dB)

Resets
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e State-variable resets zero-out the quantization noise
before it becomes significant

e Overall system has truly finite memory

60



Synthetic Division Algorithm

Algorithm for performing synthetic division to generate
the tail-canceling polynomial B'(z):

int 1,3;
double *w=(double *)malloc((P+1)x*sizeof (double)) ;
/**%* load the numerator coefficients for B(z) *x*x*/
for (i=0;i<P+1;i++){
wlil=b[i];
¥
/**xx do synthetic division **x*/
for(i=0; i<=N; i++){
factor=w[0];
for(j=0; j<P;j++){
wljl=wlj+1]+factor*alj]l;
+
w[P]=0;
/**%** The remainder after the i-th step is in w[0..(P-1)] **x
¥
/**x*x copy the result to the output array **x*/
for(i=0;i<P;i++) {
bb[i]=w[i];

61



A One-Pole (Almost) TIIR Filter

-~ Warm(n) & Switch(n)
Warm(n) & -~ Switch(n) Clear(n)

J

= Clear(n)

Switch(n)

x(n) ———>

Shared Delay Line

1P

Clear and halt filter 1

(rising edge active) Start filter 1 on direct signal

Clear(n) ... 4,—|—,—L87Wit.c!1.to using filter 1
Clear & halt filter 2
=1 Warm() ... L[ 120

1 —pz'l etc.

Switch(n) ... | ] L ...

—> N =—  Time(samples) n—>

e Generates truncated exponentials or constants

e Filter complexity on average =~ one pole

e Shared delay line

e Shared dynamics
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Offset Exponentials

Use two one-pole TIIRs, to make an offset exponential:

ae +b, n=0,1,2,...,N — 1

0, otherwise

h(n) =

e The constant portion b requires only one multiply
(by ) since the pole for this TIIR filter is at z = 1

e Resets for pure integrators are needed less often than
for growing exponentials

e Using a cascade of digital integrators, any polynomial
impulse response is possible

e A cubic-spline impulse response requires four
integrators

constant ramp quadratic  cubic

+ ——» y(n) =by +bn+byn* +byn’
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