Outline

- Horn Modeling (Trumpet)
- Piecewise Conical Bore Modeling
- Truncated Infinite Impulse Response (TIIR) Filters
Horn Modeling

Bore Profile Reconstruction from Measured Trumpet Reflectance

- Inverse scattering applied to pulse-reflectometry data to fit piecewise-cylindrical model (like LPC model)
- Bore profile reconstruction is reasonable up to bell
- The bell is not physically equivalent to a piecewise-cylindrical acoustic tube, due to
 - complex radiation impedance,
 - conversion to higher order transverse modes
• From pulse reflectometry on trumpet with no mouthpiece

• Bore profile is reconstructed, smoothed, and segmented

• Impulse response of “bell segment” = “ideal filter”

• At $f_s = 44.1$ kHz, filter length is ≈ 400 to 600 samples
• A length 400 FIR bell filter is too expensive!

• Convert to IIR? Hard because
 – Phase (resonance tunings) must be preserved
 – Magnitude (resonance Q) must be preserved
 – Rise time \(\approx 150 \) samples
 – Phase-sensitive IIR design methods perform poorly
FIR to IIR Conversion Attempts

Bell Impulse Response (dB) Before Truncation

- 561 samples gives cut-off around -60 dB relative to maximum
- This length 561 FIR filter can be reduced to a lower-order IIR filter by minimizing some norm of the impulse-response error
- Hankel norm minimization should always work in theory

Hankel Norm Method

Eigenvalues of Hankel Matrix (dB)
Largest Eigenvalues of Hankel Matrix (dB)
Order 15 Hankel-Norm IIR Fit to Length 561 FIR Measured Trumpet-Bell Reflectance

- Order 15 is a “sweet spot” in the eigenvalues plot
- Hankel Norm is the only phase-sensitive IIR error norm we know which can always be reliably minimized in principle
• Norm is sensitive to *linear* magnitude error, not dB
• This bell filter is too “bright” and fit is generally poor
• Initial time-domain match is reasonable, but it can’t “hold on” until the main reflection
• Numerical failure is a likely (in Matlab/PentiumII doubles)
Halving the order actually looks better ("can’t happen")

- Error plot indicates numerical troubles here as well
• An order P IIR filter is made using Pth eigenvector of the 561×561 Hankel matrix (condition number $= 51751075$)

• Numerical failure occurs at the higher orders we need

• Slow rise time of impulse response causes “numerical stress” on all phase-sensitive IIR design methods when the IIR order is much less than the rise time
Order 10 Steiglitz-McBride L_2 Fit to a
Length 561 FIR Filter Model

- All poles concentrated at low frequencies
- Little attention to high frequencies
- Internal “equation-error” weighting
- Numerical ill-conditioning warning printed by Matlab
SM-10 Group Delay Fit

Group Delay Fit

Normalized Frequency

Group Delay (samples)

Ideal approximation

Normalized Frequency

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

13
SM-10 Phase Delay Fit

Phase Delay Fit

- Ideal
- Approximation

Normalized Frequency

Phase Delay (samples)
SM-10 Amplitude Response Fit

Magnitude Fit over Entire Nyquist Band

- - - - Ideal

--- Approximation

Normalized Frequency

Magnitude (dB)
Another Measured Trumpet Bell Reflectance

Measured Trombone Bell Reflectance
Idea!

- Break up impulse response into \textit{exponential} or \textit{polynomial segments}
- Exponential and polynomial impulse-responses can be designed using \textit{Truncated IIR (TIIR) Filters}

![Bell Impulse Response Segmentation](image_url)
Four-Exponential Fit to Estimated Trumpet-Bell Filter (Exp-4)

Exp-4 Impulse Response Fit

Exp-4 Phase Response Fit
Exp-4 Amplitude Response Fit

Exp-4 Low-Frequency Zoom
Exp-4 Group Delay Fit

Exp-4 Phase Delay Fit
Exp-4 Impulse Response Fit (Repeated)

Exp-4 Slope Fit
Two Exponentials Connected by a Cubic Spline Measured Trumpet Data (Exp2-S3)

Exp2-S3 Slope Fit
Exp2-S3 Impulse Response Fit

Exp2-S3 Phase Response Fit
Exp2-S3 Amplitude Response Fit

Exp2-S3 Low-Frequency Zoom
Exp2-S3 Group Delay Fit

![Group Delay Fit Graph]

Exp2-S3 Phase Delay Fit

![Phase Delay Fit Graph]
Two Exponentials Followed by a 6th-Order IIR Filter Designed by Steiglitz McBride Algorithm (Exp2-SM6)
Exp2-SM6 Impulse Response Fit

Exp2-SM6 Slope Fit
Exp2-SM6 Phase Response Fit

Phase Fit

- - - Ideal
--- Approximation

Phase vs Normalized Frequency

Phase: −80 to 0
Normalized Frequency: 0 to 0.07
Exp2-SM6 Amplitude Response Fit

Magnitude Fit over Entire Nyquist Band

Exp2-SM6 Low-Frequency Zoom

Magnitude Fit
Results for Measured Trumpet Data Using Two Offset Exponentials and Two Biquads

Slope Fit

- Bell model filter complexity comparable to order 8+ IIR
- Offset exponentials were fit using `fmins()` in Matlab
- Two biquads were fit as a single fourth-order filter using the Steiglitz-McBride algorithm (`stmcb()` in Matlab)
Measured Trumpet Bell Impulse Response

TIIR Trumpet Bell Impulse Response
Measured Trumpet Bell Amplitude Response

TIIR Trumpet Bell Amplitude Response
Trumpet Bell Phase Delay Fit

Input Impedance of Complete Bore + Bell Model
Comparison to Measurements

The next two pages of plots compare the measured impulse response with that produced by the final digital waveguide model consisting of a trumpet bore + bell (but no mouthpiece).

• Comparison 1: two offset exponentials and two biquads to model the bell impulse response

• Comparison 2: two offset exponentials and three biquads to model the bell impulse response
Measured Impulse Response

Synthesized Impulse Response, Order 4 Tail
Measured Impulse Response

![Measured Impulse Response Graph](image)

Synthesized Impulse Response, Order 6 Tail

![Synthesized Impulse Response Graph](image)
Piecewise Conical Acoustic Tube Modeling

Simple Example: Cylinder with Conical Cap

Physical Outline of Cylinder and Cone:

\[L_1 = 50 \ cT \]
\[L_2 = 25 \ cT \]

Digital Waveguide Model (DWM) for Pressure Waves:

\[p_i(t) \]

\[T(z) = \left(\frac{100}{99} \right) \left(\frac{1 - z^{-1}}{1 - \frac{101}{99} z^{-1}} \right) = 1 + R(z) \]

Reduced DWM for Maximum Computational Efficiency:

\[p_i(nT)/2 \]

where

\[R(z) = \left(\frac{1}{99} \right) \left(\frac{1 + z^{-1}}{1 - \frac{101}{99} z^{-1}} \right) \]
• **Problem:** Reflection filter $R(z)$ and transmission filter $T(z)$ are unstable (pole at $z = 101/99$)

• Overall system is passive \Rightarrow unstable pole is canceled

Implementation Idea

Apply TIIR “alternate and reset” idea to the unstable conical subsystem

• Cone is not truly FIR $\Rightarrow t_{60}$ replaces FIR length

• When cylinder is closed-ended, cone traveling-wave components increase without bound \Rightarrow must switch out and reset the entire cone assembly (scattering-junction filter $R(z)$ and cone’s entire delay line)

• According to simulations thus far, cylinder waves are well behaved and do not need to be reset (no general proof yet)

Basic Principle

Periodically reset any subsystem containing a canceled unstable pole at intervals greater than or equal to the t_{60} for that subsystem
Interesting Paradox at DC

DC Steady State: Closed-End Cylinder

\[p(t) = p^+(t) + p^-(t) = x \quad \text{(constant)} \]

\[p(t) = x \quad \text{(const)} \]

- \(R(1) = -1 \) (dc response of reflection filter inverts)
- \(T(1) = 0 \) (dc does not transmit through the junction)
- Physically obvious dc solution (constant pressure offset) is not possible in either the cone or the cylinder model!
- Simulated impulse responses agree with the literature
- A final constant dc offset is observed in the simulations
Solution to Paradox

• It turns out the reflection transfer function looking into the cone from the cylinder has *two poles* and *two zeros* at dc

• The dc poles and zeros *cancel* and leave a dc cone reflectance equal to $+1$ (the physically obvious answer)

• We can’t just set the reflection filter to its dc equivalent to figure out the dc behavior of the overall model

• Instead, a more careful limit must be taken

In the s plane, the conical cap pressure reflectance, seen from the cylinder, can be derived to be

$$H(s) \triangleq \frac{1 + R(s)(1 + 2st_x)}{2st_x - 1 - R(s)}$$

where t_x is the time (in seconds) to propagate across the cone, and

$$R(s) = -e^{-2st_x}$$

is the reflectance of the cone at its entrance. We have

$$\lim_{s \to 0} R(s) = -1$$
$$\lim_{s \to 0} H(s) = +1$$
Truncated Infinite Impulse Response (TIIR) Digital Filters

An FIR filter can be constructed as the difference of two IIR filters:

\[\text{Infinite Impulse Response (IIR)} - \quad \text{Delayed and Scaled IIR} \quad = \quad \text{Truncated IIR = FIR} \]

General FIR filter

- **Coefficients:** \(\{h_0, \ldots, h_N\} \)
- **Implementation (convolution):**
 \[y(n) = (h * x)(n) = \sum_{m=0}^{N} h_m x(n - m) \]

- **Transfer function:**
 \[H_{\text{FIR}}(z) \triangleq h_0 + h_1 z^{-1} + \ldots + h_N z^{-N} \]
 \[\triangleq z^{-N} C(z), \]
where $C(z)$ is the N-th degree polynomial in z formed by the h_k

General P-th order IIR filter

- **Difference equation**

$$y(n) = - \sum_{k=1}^{P} a_k y(n - k) + \sum_{\ell=0}^{P} b_\ell x(n - \ell)$$

- **Transfer function**

$$H_{IIR}(z) \triangleq \frac{b_0 + b_1 z^{-1} + \ldots + b_P z^{-P}}{1 + a_1 z^{-1} + \ldots + a_P z^{-P}}$$

$$\triangleq \frac{b_0 z^P + b_1 z^{P-1} + \ldots + b_P}{z^P + a_1 z^{P-1} + \ldots + a_P}$$

$$\triangleq \frac{B(z)}{A(z)}$$

$$\triangleq h_0 + h_1 z^{-1} + h_2 z^{-2} + \ldots,$$

where

$$A(z) \triangleq z^P + a_1 z^{P-1} + \ldots + a_P \quad \text{(monic)}$$

$$B(z) \triangleq b_0 z^P + b_1 z^{P-1} + \ldots + b_P$$
TIIR Construction: A One-Pole Example

Consider an FIR filter having a truncated geometric sequence \(\{ h_0, h_0p, \ldots, h_0p^N \} \) as an impulse response. This filter has the same impulse response for the first \(N + 1 \) terms as the one-pole IIR filter with transfer function

\[
H_{\text{IIR}}(z) = \frac{h_0}{1 - pz^{-1}}.
\]

Subtracting off the tail of the impulse response gives

\[
H_{\text{FIR}}(z) = h_0 + h_0pz^{-1} + \cdots + h_0p^Nz^{-N}
\]

\[
= \left\{ h_0 + h_0pz^{-1} + \cdots \right\}
\]

\[
- \left\{ h_0p^{N+1}z^{-(N+1)} + h_0p^{(N+2)}z^{-(N+2)} + \cdots \right\}
\]

\[
= \frac{h_0}{1 - pz^{-1}} - p^{N+1}z^{-(N+1)} \frac{h_0}{1 - pz^{-1}}
\]

\[
= h_0 \frac{1 - p^{N+1}z^{-(N+1)}}{1 - pz^{-1}}
\]

The time-domain recursion for this filter is

\[
y[n] = \sum_{k=0}^{N} h_0p^kx[n - k]
\]

\[
= py[n - 1] + h_0 \left(x[n] - p^{N+1}x[n - (N + 1)] \right)
\]
Complexity Notes

• Direct FIR filter implementation requires $N + 1$ multiplies and N adds

• TIIR implementation requires 3 multiplies and 2 adds, independent of N

• No savings in memory

Note that there is a pole-zero cancellation in the TIIR transfer function

\[H(z) = h_0 \frac{1 - p^{N+1} z^{-(N+1)}}{1 - p z^{-1}} = h_0 + h_0 p z^{-1} + \cdots + h_0 p^N z^{-N} \]

• If $|p| < 1$, no problem since the canceled pole is stable

• If $|p| \geq 1$, imperfect pole-zero cancellation due to numerical rounding leads to exponentially growing round-off error

Basic Idea: Since the overall TIIR filter is FIR(N), alternate between two instances of each unstable one-pole, starting each new one from the zero state N samples before it is actually used. (Apparently first suggested by T. Fam at Asilomar-’87 for the case of distinct poles.)
Extension to Higher-Order TIIR Sequences

We can extend this idea from the one-pole case to any rational filter $H(z) = B(z)/A(z)$. The general procedure is to find the “tail filter” $H'_{IIR}(z)$ and subtract it off:

$$H_{FIR}(z) = H_{IIR}(z) - H'_{IIR}(z)$$

Multiply $H_{IIR}(z)$ by z^N to obtain

$$z^N H_{IIR}(z) = h_0 z^N + \cdots + h_{N-1}z + h_N$$

$$+ h_{N+1}z^{-1} + h_{N+2}z^{-2} + \cdots$$

$$\Delta = C(z) + H'_{IIR}(z)$$

$$= \frac{z^N B(z)}{A(z)} \equiv C(z) + \frac{B'(z)}{A(z)}$$

- $B'(z)$ is the unique remainder after dividing $z^N B(z)$ by $A(z)$ using “synthetic division”

 $(z^N B(z) \equiv B'(z) \pmod{A(z)})$

- We may assume $\text{Deg} \{B'(z)\} = \text{Deg} \{A(z)\} - 1$

- $B'(z)$ gives us our desired “tail filter” for forming $H_{FIR} = H_{IIR} - H'_{IIR}$:

$$H'_{IIR}(z) = \frac{B'(z)}{A(z)}$$
Higher-Order TIIR Filters

We have

\[H_{\text{FIR}}(z) = H_{\text{IIR}}(z) - z^{-N} H'_{\text{IIR}}(z) \]
\[= \frac{B(z) - z^{-N} B'(z)}{A(z)} \]

The corresponding difference equation is

\[y[n] = - \sum_{k=1}^{P} a_k y[n - k] + \sum_{\ell=0}^{P} b_\ell x[n - \ell] \]
\[- \sum_{m=0}^{P-1} b'_m x[n - m - (N + 1)] \]

Since the denominators of \(H_{\text{IIR}}(z) \) and \(H'_{\text{IIR}}(z) \) are the same, the *dynamics* (poles) can be shared:
Complexity and Storage-Cost

\[H_{\text{FIR}}(z) = \frac{B(z) - z^{-N}B'(z)}{A(z)} \]

\(N = \) FIR order and let \(P = A(z) \) order (\#poles)

- The computational cost of the general truncated \(P \)-th order IIR system is \(3P + 1 \) multiplies and \(3P - 2 \) adds, independent of \(N \)
- Net computational savings is achieved when \(N > 3P \)

Storage Requirements

- \(P \) output samples for the IIR feedback dynamics \(A(z) \)
- \(N \) input samples of the FIR filter (main delay line)
- \(P \) input samples for \(B(z) \) (normally in delay line)
- \(P \) input samples for \(B'(z) \) (also possibly in delay line)

Thus, we need a total of at least \(N + P \) input delay samples, of which only \(2P \) are accessed, and \(P \) output delay samples. This is between \(P \) and \(2P \) more than a direct FIR implementation.
Example

We wish to truncate the impulse response of
\[H^+(z) = \frac{B^+(z)}{A^+(z)} = \frac{1}{1 - 1.9z^{-1} + 0.98z^{-2}} \]
after \(N = 300 \) samples to obtain a length 301 FIR filter \(H^+_{\text{FIR}}(z) \)

Steps:

1. Perform synthetic division on \(z^{300}B^+(z) \) by \(A(z) \) to obtain the remainder
 \[B'^+(z) = -0.162126z + 0.139770 \]

2. Form the TIIR filter as
 \[H^+_{\text{FIR}}(z) = \sum_{k=0}^{N} h^+_k z^{-k} = \frac{B^+(z) - z^{-N} B'^+(z)}{A^+(z)} \]
 \[= \frac{1 + 0.162126 z^{-299} - 0.139770 z^{-300}}{1 - 1.9z^{-1} + 0.98z^{-2}} \]
Impulse Response of TIIR Implementation Without Resets

Graph 1:
- **Y-axis:** Amplitude
- **X-axis:** Time (Samples)

Graph 2:
- **Y-axis:** Amplitude (dB)
- **X-axis:** Time (Samples)
• At time $n = 301$, the tail of the response is subtracted off, and the impulse-response magnitude drops by about 115 dB

• Due to quantization errors, there is a residual response

• Poles are all stable, so error decays
Impulse Response of TIIR Implementation With Resets
• Again, impulse-response tail is subtracted off at time $n = 301$, giving around 115 dB attenuation

• Additionally, state variables are cleared every 300 samples

• Residual response completely canceled at time $n = 600$

• System has truly finite memory
To form a linear phase TIIR filter based on the previous example, we need also the “flipped” impulse response generated by

\[H_{\text{FIR}}^-(z) = \frac{-0.139770z^2 + 0.162126z - z^{-300}}{0.98z^2 - 1.9z + 1} = \frac{-0.142622z^2 + 0.165435z - 1.020408z^{-300}}{z^2 - 1.938776z + 1.020408} \]

where the last equation is normalized by 0.98 to make the denominator monic.

This system has two unstable hidden modes.
Impulse Response Without Resets
• Tail is canceled with about 125 dB attenuation

• Due to the unstable canceled poles, quantization noise grows without bound

• By time 1500 samples, the quantization noise dominates

• (Arithmetic = double-precision floating point with single-precision state variables)
Impulse Response of TIIR Implementation With Resets
• State-variable resets zero-out the quantization noise before it becomes significant

• Overall system has truly finite memory
Synthetic Division Algorithm

Algorithm for performing synthetic division to generate the tail-canceling polynomial $B'(z)$:

```c
int i,j;
double *w=(double *)malloc((P+1)*sizeof(double));
/*** load the numerator coefficients for B(z) ***/
for(i=0;i<P+1;i++){
    w[i]=b[i];
}
/*** do synthetic division ***/
for(i=0; i<=N; i++){
    factor=w[0];
    for(j=0;j<P;j++){
        w[j]=w[j+1]+factor*a[j];
    }
    w[P]=0;
    /*** The remainder after the i-th step is in w[0..(P-1)] ***/
}
/*** copy the result to the output array ***/
for(i=0;i<P;i++) {
    bb[i]=w[i];
}
```
A One-Pole (Almost) TIIR Filter

\[
1P = \frac{1}{1 - p z^{-1}}
\]

- Generates truncated exponentials or constants
- Filter complexity *on average* \(\approx\) one pole
- Shared delay line
- Shared dynamics
Offset Exponentials

Use *two* one-pole TIIRs, to make an *offset exponential*:

\[h(n) = \begin{cases} \ a e^{cn} + b, & n = 0, 1, 2, \ldots, N - 1 \\ 0, & \text{otherwise} \end{cases} \]

- The constant portion \(b \) requires only one multiply (by \(b \)) since the pole for this TIIR filter is at \(z = 1 \)
- Resets for pure integrators are needed less often than for growing exponentials
- Using a *cascade* of digital integrators, any *polynomial* impulse response is possible
- A cubic-spline impulse response requires four integrators

\[y(n) = b_0 + b_1 n + b_2 n^2 + b_3 n^3 \]