Basic Finite Differences

• Simplest Ordinary Differential Equation (ODE):

\[v(t) = L \frac{di}{dt} \quad ("f = ma") \]

\[\leftrightarrow \quad V(s) = Ls I(s) - i(0) \]

– Voltage \(v \) across and current \(i \) through inductor \(L \),
or
– Force \(v \) on and velocity \(i \) of mass \(L \)

• We know how to sample \(i(t) \) and \(v(t) \) to obtain

\(i_n = i(nT) \) and \(v_n = v(nT), n = 0, 1, 2, \ldots \)

• How do we “simulate” the inductor (or mass) to produce samples of \(v(t) \) from samples of \(i(t) \) or vice versa?

• In continuous time, the differentiator is a one-zero filter:

\[R_L(s) = \frac{V(s)}{I(s)} = ms \]

assuming \(i(0) = 0 \)

• We thus need to \textit{digitize} this continuous-time filter to obtain a \textit{digital filter}
First-Order Digitization of Derivatives

Differentiation can be “digitized” in a variety of ways:

- Backward Euler (BE):
 \[s \leftarrow \frac{1 - z^{-1}}{T} \quad \mathcal{O}(T) \text{ accurate} \]

- Forward Euler (FE):
 \[s \leftarrow \frac{z - 1}{T} \quad \mathcal{O}(T) \text{ accurate} \]

- Trapezoidal Rule (Bilinear Transform):
 \[s \leftarrow \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}} \quad \mathcal{O}(T^2) \text{ accurate} \]

These are all first-order filters that approximate a time-derivative.

We can also use higher-order filters by doing a digital filter design to approximate the frequency response

\[H(j\omega) = j\omega \]

Accuracy depends on filter order and error criterion used.

Digitizing Differential Operators

Backward Euler Method:

\[
\begin{align*}
\frac{di}{dt} & \approx \frac{i_n - i_{n-1}}{T} \\
\Rightarrow \quad v_n & = \frac{L}{T}(i_n - i_{n-1})
\end{align*}
\]

- Causal
- Explicit
- 1/2 sample time delay

Centered Difference:

\[
\begin{align*}
\frac{di}{dt} & \approx \frac{i_{n+1} - i_{n-1}}{2T} \\
\Rightarrow \quad v_n & = \frac{L}{2T}(i_{n+1} - i_{n-1})
\end{align*}
\]

- No time delay
- Possibly implicit
Trapezoidal rule for numerical integration:

\[v_n = -v_{n-1} + \frac{2L}{T} (i_n - i_{n-1}) \]

Derivation:

\[i(t) = \frac{1}{L} \left(\int_0^t v(t')dt' \right) + i_0 \]

so that

\[i(nT) = \frac{1}{L} \left(\int_0^{nT} v(t')dt' \right) + i_0 \]

\[= \frac{1}{L} \left(\int_0^{(n-1)T} v(t')dt' \right) + i_0 + \frac{1}{L} \int_{(n-1)T}^{nT} v(t')dt' \]

\[= i((n-1)T) + \frac{1}{L} \int_{(n-1)T}^{nT} v(t')dt' \]

\[\approx i((n-1)T) + \frac{T}{2L} (v((n-1)T) + v(nT)) \]

The trapezoidal rule is equivalent to the bilinear transform method for converting an analog filter to a digital filter.

Accuracy

Suppose we take the backward-Euler approximation

\[v_n = (L/T)(i_n - i_{n-1}), \]

and expand \(i_{n-1} \) in Taylor series about \(i_n \). This yields:

\[v_n = (L/T) \left(i_n - \left(i_n - T \frac{di}{dt}\big|_{nT} + O(T^2) \right) \right) \]

\[= \frac{L}{T} \frac{di}{dt}\big|_{nT} + O(T) \]

We say that the backward difference approximation has an error of order \(T \).

For the trapezoid rule,

\[v_n = L \frac{di}{dt}\big|_{nT} + O(T^2) \]

so it is second-order accurate in \(T \).

- In general, the more accurate a difference scheme, the more information from neighboring grid points it will require.
- Higher order digital filters give better approximations to differential operators.
- In audio, we are often concerned with the frequency response approximation.
Frequency Domain Interpretations

The Laplace transform of $v = L di/dt$ gives

$$V(s) = Ls I(s)$$

assuming zero initial conditions, where $s = \sigma + j\omega$ is the complex frequency variable.

Taking z transforms of the sequences v_n and i_n in the backward-Euler scheme yields:

$$V(z) = L \frac{1 - z^{-1}}{T} I(z)$$

Thus,

- Backward Euler conformal map:
 $$s \rightarrow \frac{1 - z^{-1}}{T}$$

- Forward Euler conformal map:
 $$s \rightarrow \frac{z - 1}{T}$$

- Centered Difference conformal map:
 $$s \rightarrow \frac{z - z^{-1}}{T}$$

- Bilinear Transform conformal map:
 $$s \rightarrow \frac{2(1 - z^{-1})}{T(1 + z^{-1})}$$

Distributed Example: 1-D wave equation, solution by FDA approach

Suppose we want to simulate one direction in an acoustic space in which the air is described by the second-order wave equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

where $u(x, t)$ is particle velocity of the air relative to equilibrium.

- This is the familiar 1-D wave equation, with wave speed given by
 $$c = \sqrt{\frac{\gamma P_0}{\rho_0}}$$

 where
 - $\gamma = 1.4$ for air ("adiabatic gas constant"),
 - P_0 is ambient pressure, and
 - ρ_0 is mass density.

- The same equation holds also for pressure $p(x, t)$ and density $\rho(x, t)$, all with the same wave speed c.

Let’s “digitize” this wave equation to create a finite difference scheme (FDS).
Second-Order Finite Difference Scheme

The simplest, and traditional way of discretizing the 1-D wave equation is by replacing the second derivatives by second order differences:

\[
\frac{\partial^2 u}{\partial t^2} \bigg|_{x=k\Delta,t=nT} \approx \frac{u^n_{k-1} - 2u^n_k + u^{n+1}_k}{T^2},
\]

\[
\frac{\partial^2 u}{\partial x^2} \bigg|_{x=k\Delta,t=nT} \approx \frac{u^n_{k-1} - 2u^n_k + u^{n+1}_{k+1}}{\Delta^2},
\]

where \(u^n_k \) is defined as \(u(k\Delta, nT) \). Here we have sampled the time-space plane in a uniform grid, with a timestep of \(T \) and a space step of \(\Delta \). The \(u^n_k \) are the grid variables here. Now, through substitution, the wave equation becomes:

\[
u^n_{k-1} - 2u^n_k + u^{n+1}_k = c^2T^2\Delta^2(u^n_{k-1} - 2u^n_k + u^n_{k+1})
\]

- Note that if we choose \(T/\Delta = 1/c \), the equation reduces further to:

\[
u^{n+1}_k = u^n_{k-1} + u^{n+1}_{k+1} - u^n_k
\]

Let’s examine this recursion on the time/space grid, assuming for the moment no boundary conditions:

Time-Space Grid of Second-Order FDS

\[
u^{n+1}_k = u^n_{k-1} + u^{n+1}_{k+1} - u^n_k
\]

- Grid variable at “current” point depends on value at two previous time steps (a second order scheme in time). We thus need to specify initial data for all \(m \) at times \(n = 0 \) and \(n = 1 \).
- Grid variable at “current” point depends on values at adjacent locations on the string (at previous time).
- Difference scheme is explicit (thus parallelizable); that is, each grid variable at time \(n + 1 \) depends only on grid variables at previous time instants. This is a very desirable property.
A Peek at Stability of Finite Difference Schemes

Let's look again at the difference scheme we derived for the 1-D wave eq, with the special time/space step $c = T/\Delta$:

$$u_{k}^{n+1} = u_{k-1}^{n} + u_{k+1}^{n} - u_{k}^{n-1}$$

The velocity sample $u(k, n)$ is a two-dimensional sequence with a time index and a spatial coordinate index.

Suppose we now take the DTFT with respect to the spatial index k:

$$\sum_{k=-\infty}^{\infty} u_{k}^{n+1} e^{-j\omega k \Delta} = \sum_{k=-\infty}^{\infty} (u_{k-1}^{n} + u_{k+1}^{n} - u_{k}^{n-1}) e^{-j\omega k \Delta}$$

or

$$U_{n+1}(\omega) = (e^{-j\omega \Delta} + e^{j\omega \Delta})U_{n}(\omega) - U_{n-1}(\omega)$$

where here $U_{n}(\omega)$ is the spatial spectrum of the solution at time n, and ω is the spatial frequency variable. We can also write this in vector form as:

$$\begin{bmatrix} U_{n+1}(\omega) \\ U_{n}(\omega) \end{bmatrix} = \begin{bmatrix} 2 \cos \omega \Delta & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} U_{n}(\omega) \\ U_{n-1}(\omega) \end{bmatrix}$$

Note that the state of the system is completely determined by $U_{n}(\cdot)$ and $U_{n-1}(\cdot)$.

Von Neumann Analysis

The matrix

$$A \Delta = \begin{bmatrix} 2 \cos \omega \Delta & -1 \\ 1 & 0 \end{bmatrix}$$

can be called the state transition matrix corresponding to the state-space description determined by the choice of state vector

$$x(n) \Delta = \begin{bmatrix} U_{n}(\omega) \\ U_{n-1}(\omega) \end{bmatrix}$$

and the state update can be written more simply in vector form as $x(n + 1) = Ax(n)$. Note that the state-space description is indexed by frequency ω, regarded as fixed.

- From linear systems theory, we know that such a system will be asymptotically stable if the eigenvalues λ of the matrix A are both less than 1 in magnitude.
- It is easy to show that the eigenvalues of A are $\lambda_+ = e^{j\omega \Delta}$ and $\lambda_- = e^{-j\omega \Delta}$. Thus, $|\lambda_\pm(\omega)| = 1, \forall \omega$.
- While we are not guaranteed asymptotic stability, $|\lambda(\omega)| = 1$ does imply that, in some sense, our solution is not getting larger with time at any spatial frequency. This can be defined as marginal stability.
• Note that we should expect the eigenvalues to have unit modulus, because the wave equation we started with corresponds to a lossless medium (an ideal gas). The original PDEs were derived without any loss mechanisms.

• A lossless discrete-time simulation can be highly desirable, particularly as a modeling starting point.

• This kind of “Von Neumann analysis” can be applied to any constant-coefficient FDS which is linear in its spatial directions.

Problems with FDS

• Convergence: Since the approximations to the second derivatives we used were second order accurate (in T and Δ), the scheme as a whole is accurate as $O(T^2, \Delta^2)$.

• Making an FDS more accurate (i.e., converge faster) generally requires a recursion involving more grid variables.

• An FDS for a higher order PDE also generally involves more grid variables.

• From a signal processing point of view, a more accurate simulation of an LTI medium is obtained by increasing the order of the filter.

• Note that an optimal filter design yields FDS coefficients which may be translated back to differential equation coefficients (which may or may not have physical meaning).

• Stability becomes more difficult to ensure in general (need to check eigenvalue magnitudes). The addition of boundary conditions makes this even more difficult.
• A good finite difference scheme may not be explicit, and hence may require matrix inversions (generally sparse).

For example, the dependence diagram below represents an implicit scheme: We cannot calculate the grid variables at the current timestep as weighted sums of grid variables at previous instants.

```
   current point
   n+1  n  n-1  time
   m-1  m  m+1
   spatial step
```

More General Differential Equations

A more general linear constant coefficient differential equation can be written as:

\[
\sum_{k=0}^{N} a_k \frac{d^k v}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k i}{dt^k}
\]

or, in the frequency domain (0 initial conditions):

\[
\sum_{k=0}^{N} a_k s^k V(s) = \sum_{k=0}^{M} b_k s^k I(s)
\]

We can define a transfer-function relationship as follows:

\[
Z(s) = \frac{V(s)}{I(s)} = \frac{b_0 + b_1 s + b_2 s^2 + \cdots + b_M s^M}{1 + a_1 s + a_2 s^2 + \cdots + a_N s^N}
\]

where we have normalized \(a_0 \neq 0\) to 1. Note that \(Z(s)\) is a rational function of \(s\) of order \(\max(N, M)\).

If \(i(t)\) and \(v(t)\) are measured at the same point, then \(Z(s)\) is a driving point impedance, as depicted below:

```
   i(t)  
   Z(s)  
   v(t)  
```

If the circuit (or mechanical system) is physically passive, then \(Z(s)\) must be positive real.
References

- **Numerical Sound Synthesis**
 Stefan Bilbao, Wiley 2009

- **Finite difference schemes and von Neumann analysis:**
 Finite Difference Schemes and Partial Differential Equations
 J. C. Strikwerda, Wadsworth and Brooks 1989

- **Appendix D** of the text contains a terse introductory summary of Strikwerda from a signal processing point of view.