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e Overview

e Octave Filter Banks

e Summing FFT Bins

e Nonuniform FFT Filter Banks!

'Reference: “Audio FFT Filter Banks, J.O. Smith, DAFX-2009,
http://dafx09.como.polimi.it/proceedings/papers/paper_92.pdf
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Overview

e We've seen the need for nonuniform spectral
resolution in audio spectrograms

e The FFT gives the same resolution at every bin

e We can sum adjacent FFT bins to lower the
frequency resolution

e More generally, we can inverse FFT adjacent FFT
bins to compute a time-domain signal corresponding
to a particular frequency band

e We consider the octave filter bank as an example
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Perspective Octave Filter Banks

e We are talking today about FilterBank Summation Simplified Schematic

(FBS) based on the STFT
e Most STFT applications are based on the OLA

Complex Octave Filter Bank
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Spectral Sample Number

Simple octave filter bank for complex signals.

e Three bands: Passbands 4,2,1 bins (samples) wide

e Leftover dc band (needed for perfect reconstruction)

o “sample number” 2 “bin number plus 1" (matlab)



Summing FFT Bins to get Wider Bands
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e Instead of simple summing, a weighting can be used,
corresponding to some desired smoothing kernel

e Summed bands can overlap (e.g., when weighted)

e In general, we define an overlap-add decomposition of
the spectrum (FBS = dual of OLA in time)

5

Summing STFT Bins

Reasoning:

e The STFT implements a uniform FIR filter bank

e Each FFT bin = one time-sample of filter-bank
output in one filter channel

e Summing adjacent filter-bank signals sums
corresponding passbands to create a wider passband

e Summing adjacent FFT bins in the STFT, therefore,
synthesizes one time-sample from a wider passband
implemented using the FFT

But note:

e [he wider passband created by adjacent-channel
summing corresponds to a shorter impulse response in
the time domain

e The maximum STFT hop size R is therefore reduced

e This means narrower bands will be oversampled in the
time domain, due to the smaller hop-size R



Avoiding STFT Oversampling in Time Inverse FFTs on Wider Bands

Idea: Don't shorten the hop-size R, and instead
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e One FFT hop yields all needed samples in each band ifft (4)
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e FFT implementation of one frame of simple octave
filter bank

e Successive frames non-overlapping
(rectangular window, R = M)



Matlab Example

Desired frequency responses (N = 8):

H=1[...

O o0 O O 1 1 1 1
0 0 1 1 0 0 0 0 ;
0 1 0 0 0 0 0 0o ; .
1 0 0 0 0 0 0 01];

Let

X(1:N) = FFT of current data frame

1sn(k) = lowest spectral sample number for band k

hsn(k) = highest spectral sample number for band k

(spectral sample number 2 bin number + 1)

For Band 1 (top row of H), 1sn(1)=5 and hsn(1)=8.
The (full-rate) time-domain signal corresponding to band
k is computed by

BandK = X(1sn(k):hsn(k));
z1 = zeros(1,1sn(k)-1);
z2 = zeros(1,N-hsn(k));
BandKzp = [zl1l, BandK, z2];

x(k,:) = ifft(BandKzp); % Output signal, band k
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Critically Downsampled Band Signals

For critical sampling in band k, simply omit the spectral
zero padding:

xd{k} = ifft(BandX);

where
xd{k} = cell array for “"downsampled” signal vectors
The length of xd{k} is

N, = hsn(k) —1sn(k) +1
= number of FFT bins in band k
= power of 2 (which we will ensure)
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Perfect Reconstruction Property

Note that when L; 2 N/Ny, is an integer, we have that
BandK = ALIAS;, (BandKzp)

where ALIAS (X)) denotes the aliasing of vector X by

the factor L (the number of aliasing spectral partitions).

In matlab we could define the alias operator by

function y = alias(x,L)
Nx = length(x);
Np = Nx/L; % aliasing-partition length
y = zeros(Np,1);

for i=1:L
y =y + x(1+(i-1)*Np : i*Np) (:);
end

and then have that
BandK == alias(BandKzp,Lk)

is true for each element

(Note: reshape and sum give a faster alias function)
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Perfect Reconstruction, Time-Domain View

By the aliasing theorem (downsampling theorem), the
relation

1
BandK = L—ALIASLk(Bandsz)
k
in the frequency domain corresponds to
xdk == x(k,1:Lk:end)

in the time domain (in matlab notation)

e That is, in the time domain, xd{k} is obtained from
x(k,:) by downsampling by the factor Lk

e This produces N/Lk == Nk samples in xd{k}

e Thus, for a band that is Nk bins wide, we obtain Nk
time-domain samples for each STFT frame [when

critically sampled, again using a rectangular window
with no overlap (R = M)]

e (At the full rate—no downsampling—we obtain N
samples from each channel for each frame)
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Summary of Nonuniform FFT Filter Banks

We see that

e Taking the inverse FFT of only the bins in a given
filter-bank channel computes the critically
downsampled signal for that channel

e /ero-padding each band out to /N samples yields
full-rate time-domain signals (no downsampling)

e Downsampling factors between 1 and Lk can be
implemented by choosing a zero-padding factor for
the band somewhere between 1 and Lk samples.

e The filter bank has the perfect reconstruction (PR)
property, iI.e.,
The original input signal is exactly
reconstructed (to within a delay and possible
scale factor) from the channel signals by

performing FFTs on each and reassembling the
original signal spectrum for the frame

In other words, the PR property follows immediately
from the invertibility of the FFT
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Real Octave Filter Banks

Recall that our simple octave filter bank is for complex
signals:

Complex Octave Filter Bank

Filter Gain
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Spectral Sample Number

A corresponding real filter bank looks like this:

Real Octave Filter Bank

Filter Gain

H
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Spectral Sample Number

Unfortunately, the number of spectral samples is now
15—not a power of 2
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Problem with Real Octave Filter Banks Converting Real Signals to Complex

Tttt e Any real signal can be converted to its corresponding
“analytic signal” by filtering out the
negative-frequency components

e This is normally done by designing a Hilbert
transform filter

Filter Gain

Band 1 st
Band 2 ssssasns
Band 3 snshin
Band 4 b

- [ R e Such filters are large-order FIR filters, exactly like we
LY s are trying to design!

Spectral Sample Number

. e If we design our filter bank properly, we can use it to
e Number of spectral samples is not a power of 2 eliminate the negative-frequency components!

e Discarding sample at half the sampling rate (number
8 above) does not help, since that gives 14 samples

e There is no obvious way to octave-partition the
spectral samples of a real signal while maintaining the
power-of-2 condition for each band (for the
Cooley-Tukey FFT).
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Spectral Rotation of Real Signals

e Note that if we rotate the spectrum of a real signal
by half a bin, we obtain N/2 positive-frequency
samples and N/2 negative-frequency samples, with no
sample at dc or at the Nyquist limit

This is nice for audio signals because dc is inaudible
and the Nyquist limit is a degenerate point of the
spectrum that, for example, cannot have a phase
other than O or

If IV is a power of 2, then so is NV/2, and the
octave-band partitioning of the previous subsection
can be applied separately to each half of the
spectrum:
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Matlab for Spectral Half-Bin Rotation

LN = round(log2(N)); % number of octave bands
shifter = exp(-j*pi*[0:N-1]1/N); % half-bin
xs = x .*x shifter; J apply spectral shift
X = fft(xs,N); % project xs onto rotated basis

XP = X(1:N/2); % positive-frequency components
XN = X(N:-1:N/2+1); % neg.-frequency components
YP = dcells(XP); % partition to octave bands
YN = dcells(XN); % ditto for neg. frequencies
YPe = dcells2spec(YP); % unpack "dyadic cells"

YNe = dcells2spec(YN); % unpack neg. fregs
YNeflr = fliplr(YNe); % undo former flip

ys = ifft([YPe,YNeflr],N,2);

y = real(ones(LN,1)*conj(shifter) .* ys);

% = octave filter-bank signals (real)

yr = sum(y); % filter-bank sum (should equal x)

% Alternate reconstruction:
yP = ifft([YPe,zeros(size(YPe))],N,2);
yN = ifft([zeros(size(YNeflr)),YNeflr],N,2);

ys yP + yN;
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Improving the Channel Filters

Consider again the simple octave filter bank:

Complex Octave Filter Bank
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Spectral Sample Number

Simple octave filter bank for complex signals.
To test our FFT implementation, let's

1. feed it an impulse,
2. FFT each output signal (with zero padding), and

3. overlay the spectral magnitudes

This shows the true amplitude response of the filter bank.
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FFT Octave Filter Bank Frequency Response
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We see that our filter-bank has poor channel isolation:

e By using a non-overlapping spectral partition (recall
that we simply zero-padded each spectral band out to
the full IFFT size), we implicitly assumed a transition
width of one bin

e Only the length N rectangular window has a one-bin
transition from “pass-bin” to stopband (side lobes)
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e However, the rectangular window gives poor stopband Improving the FFT Octave Filter Bank
performance (see figure)

Furthermore, if we downsample these filter bands, then Improve filter-bank via spectral overlap-add:

Interpolated Channel Signal Spectra

e Each channel signal will contain much aliasing.

e However, we know this FFT filter bank is PR, so all 0
such aliasing must cancel out in the reconstruction W
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Band 2 - . o . .
Barjd 3 - band is replaced by a proper “spectral windowing
100 - 200 200 600 800 1000 operation” in the frequency domain (Chebyshev)

Spectral Sample Number e Disjoint spectral partition replaced by an overlap-add

decomposition (OLAD) in the frequency domain
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FFT Octave Filter-Bank Band Filters

Interpolated Channel Signal Spectra
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Spectral window = frequency response of FIR filter
designed by the window method:

e Dolph-Chebyshev window

e Length N, =127

o Side-lobe level = —80 dB

e /ero phase

e Length 256 FFT (analysis window can still be
rectangular with R = M)

e matlab: chebwin(127,80)
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Matlab for Improved Octave FFT Filter Bank

Implementation of band k:

BandK2 = Hk .x* X;

x(k,:) = ifft(BandK2); % full rate

BandK2a = alias(BandK2,Nk);

xd{k} = ifft(BandK2a); % critically sampled

Channel frequency response Hk:

W= fft(w,N); % where w = chebwin(127,80)
Hideal = [z1,ones(1,Nk),z2];
Hk = cconvr(W,Hideal); % circ. conv.

where z1 and z2 are zero padding vectors.

The band filters Hk can be said to have been designed by
the window method for FIR filter design.

cconvr (W,H) = circular convolution of two real vectors
having the same length:

function [Y] = cconvr(W,X)
we=fft(W); xc=fft(X);
yC = WC .* XC;
Y = real(ifft(yc));
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Properties of Improved FFT Filter Bank Octave Filter Bank Using Chebyshev Window

Perfect reconstruction no longer holds, since

Interpolated Channel Signal Spectra after Aliased Reconstruction

BandK2a = alias(Hk .* X, Nk); 0 b

is no longer exactly invertible 20

e When the FFT window is a length N rectangular
window, then alias(Hk .* X, Nk) == BandK, as
defined above, and there is no aliasing after all 60

-40

Gain (dB)

e More precisely, the aliased spectral samples all happen
to be zeros of the window transform (which is an
aliased sinc function) 100

-80
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. . Spectral Sample Number

e These zeros depend on the window-length being N
(no zero-padding), and on the window-type being

B . Y e Same as before but with critical downsampling of
rectangular (“no window")

each channel signal

e We may approach perfect reconstruction arbitrarily
closely by only aliasing stopband intervals onto the
passband, and by increasing the stopband attenuation
of Hk as desired

e All this stopband error cancels out in the filter-bank
sum because the input signal is an impulse
(reconstruction remains exact)

e In contrast to the PR case, we do not rely on aliasing
cancellation, which is valuable when the channel
signals are to be modified
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Gain (dB)

Aliasing on Downsampling

Interpolated Channel Signal Spectra
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e While this filter bank gives good stopband rejection,
there is still a significant amount of aliasing when the
bands are critically sampled

e This happens because the transition bands are aliased
about their midpoints

e This can be seen in the above amplitude-response
overlay by noting that aliasing “folding frequencies”
lie at the crossover point between each pair of bands
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Step Response
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e Aliased spectral signal bands (prior to inverse STFT)
for a step signal input (same filter bank)

e This type of plot looks ideal for an impulse input
signal because the spectrum is constant (so the
aliased bands are also constant)

e Note the large slice of dc energy that has aliased from
near the sampling rate to near half the sampling rate
in the top octave band

28



Step Response Signal and Error Spectra

Filter Bank Frequency Response after Aliased Reconstruction
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Signal spectrum (an impulse, since the time signal is
a step) and error spectrum

Note the large error near half the sampling rate, as
expected.

In this case (step input), the aliasing causes
significant error in the reconstruction
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Restricting Aliasing to Stopbands

e Define overlapping bands such that each band
encompasses the transition bands on either side

e Channel Bandwidth = filter pass-band plus both
transition bands

e Include more stop-band to get to the next power of 2:

— May fill with a continuation of the enclosed band'’s
stopband response (or some tapering of it, or zero)

— Since we assume stopband energy is negligible, the
difference should be inconsequential

e The desired bands may overlap each other by any
amount, and may have any desired shape

e The minimum channel bandwidth is two transition
bands plus one bin (one FFT bin)

e For the Dolph-Chebyshev window, the transition
bandwidth is known in closed form

e In summary, passbands of arbitrary width are
embedded in overlapping IFFT bands that are a
power-of-2 wide
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Example

Channel Signal Spectra Interpolated by 4
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Channel-frequency-response overlay for an octave filter
bank designed using a length 127 Dolph-Chebyshev
window (80 dB SBA) and length 256 FFT size
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Real Filter Banks

Since the passbands may be any width and the
encompassing IFFT bands may overlap by any amount,
they do not have to “pack” conveniently as power-of-two
blocks

e As a result of this flexibility, the frequency-rotation
trick is no longer needed for real filter banks

e Instead, allocate any desired bands between dc and
half the sampling rate, and let conjugate-symmetry
dictate the rest

e In addition to a left-over “dc-Nyquist” band, there is
a "Nyquist-limit" band (a typically negligible band at
half the sampling rate)
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