Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

STFT Filterbank

The STFT

$\displaystyle X_m(\omega_k) = \sum_{n=-\infty}^\infty [ x(n)e^{-j\omega_k n}] w(n-mR)
$

may be computed by the following operations: Thus, we can write

\begin{eqnarray*}
X_m(\omega_k) =
&=& \sum_{n=-\infty}^\infty [x(n)e^{-j\omega_kn}]\tilde{w}(mR-n) \\
&=& (x_k \ast \tilde{w})(mR) \hspace{1.2cm} (\tilde{w} \mathrel{\stackrel{\Delta}{=}}\hbox{\sc Flip}(w))
\end{eqnarray*}



Subsections
Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[Comment on this page via email]

``FFT Signal Processing: The Filter-Bank Summation (FBS) Method for Fourier Analysis, Modification, and Resynthesis'', by Julius O. Smith III, (From Lecture Overheads, Music 421).
Copyright © 2020-06-27 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]