Music 420 Lecture
Elementary Finite Different Schemes

Julius O. Smith III (jos@ccrma.stanford.edu)
Center for Computer Research in Music and Acoustics (CCRMA) Department of Music, Stanford University

Stanford, California 94305
June 27, 2020

Outline

- White Box and Black Box Physical Modeling
- Ordinary Differential Equations
- Equivalent Circuits
- Reference Directions
- Examples
- Difference Equations (Finite Difference Schemes)
- Backward Euler (BE)
- Forward Euler (FE)
- Trapezoidal Rule for Numerical Integration
- Bilinear Transform (BLT)
- Digital Filter Design Formulation

Ordinary Differential Equations

Ordinary Differential Equations (ODEs) typically result from Newton's laws of motion:

$$
f(t)=m a(t) \quad(\text { Force }=\text { Mass times Acceleration })
$$

Acceleration $a(t)$ relates to velocity $v(t)$ and position $x(t)$ by differentiation with respect to time t :

$$
a(t) \triangleq \dot{v}(t) \triangleq \frac{d \dot{x}(t)}{d t} \triangleq \ddot{x}(t) \triangleq \frac{d^{2} x(t)}{d t^{2}}
$$

Physical Diagram:

Force $f(t)$ driving mass m along frictionless surface

1. "White Box" Modeling:
(a) Find the describing differential equations from basic physical principles
(b) Digitize the differential equations to obtain difference equations implemented in software
2. "Black Box" Modeling:
(a) Measure the system response to a representative set of input signals
(b) Fit a computational model to the measured input-output set
(c) In the Linear, Time-Invariant (LTI) case, a Multi-Input, Multi-Output (MIMO) digital filter will suffice

This class blends white- and black-box approaches:

1. LTI sections become fast, accurate digital filters
2. Nonlinear or rapidly time-varying subsystems normally get a white-box approach (reeds, hammers, bows, ...)

2

Equivalent Circuit for a Force-Driven Mass

- Mass m is an inductor $L=m$ Henrys
- Driving force $f(t)$ is a voltage source
- Mass velocity $v(t)$ is the loop current

The ODE is obtained from the equivalent circuit by summing all "voltages" around the current loop to zero to obtain

$$
-f(t)+m \dot{v}=0
$$

The minus sign for $f(t)$ occurs because the current arrow entered the minus side of the "voltage source"

Reference Directions in Equivalent Circuits

- "Reference directions" (\pm) on the voltage source and circuit elements may be chosen arbitrarily-just keep track and be consistent
- When $f(t)$ is positive, "current" is pushed from its + to its - terminal, i.e., $v(t)$ will be positive if the rest of the circuit is just a wire or a resistor
- The "force drop" across the mass m is positive when $v(t)$ increases in the direction going from its + to terminal. This can be interpreted as the inertial reaction force of the mass that opposed the external applied force (Newton's first law of motion)

Force-Driven Mass with Friction Diagram and Equivalent Circuit

Force driving an ideal mass and dashpot

$$
\begin{aligned}
& 0=-f(t)+f_{m}+f_{\mu} \\
& 0=-f(t)+m \dot{v}(t)+\mu v(t)
\end{aligned}
$$

Force $f(t)$ driving mass m along surface with friction force $\mu v(t)$:

$$
\begin{aligned}
f(t) & =m \ddot{x}(t)+\mu v(t) \\
& =m \ddot{x}(t)+\mu \dot{x}(t)
\end{aligned}
$$

- Note that the friction force is positive to the left in this figure, i.e., it is a reaction force
- The inertial reaction force of the mass points to the left as well (not shown, but equal to $-f(t)$)

Mass-Spring ODE

An ideal spring described by Hooke's law

$$
f(t)=k x(t)=k \int_{0}^{t} v(\tau) d \tau \longleftrightarrow \frac{V(s)}{s}
$$

where k denotes the spring constant, $x(t)$ denotes the compressive spring displacement from rest at time t, and $f(t)$ is the force required for displacement $x(t)$
If the force on a mass is due to a spring then, as discussed later, we may write the ODE as

$$
k x(t)+m \ddot{x}(t)=0
$$

$($ Spring Force + Mass Inertial Force $=0)$

Physical diagram:

Mass-Spring-Wall System

- Driving force $f_{\text {ext }}(t)$ is to the right on the mass
- Driving force + mass inertial force + spring force $=0$
- Mass velocity = spring velocity
- This is a series combination of the spring and mass

If two physical elements are connected so that they share a common velocity, then they are said to be formally connected in series

Equivalent Circuit for Mass-Spring-Wall

The "series" nature of the connection becomes more clear when the equivalent circuit is considered:

- The driving force is applied to the mass such that a positive force results in a positive mass displacement and positive spring displacement (compression)
- The common mass and spring velocity appear as a single current running through the inductor and capacitor that model the mass and spring, respectively

Difference Equations (Finite Difference Schemes)

- There are many methods for converting ODEs to difference equations
- For white-box modeling, we'll use a very simple, order-preserving methods which replaces each derivative or integral with a first-order finite difference:

$$
\begin{aligned}
\dot{x}(t) & \triangleq \frac{d}{d t} x(t) \triangleq \lim _{\delta \rightarrow 0} \frac{x(t)-x(t-\delta)}{\delta} \\
& \approx \frac{x(n T)-x[(n-1) T]}{T} \triangleq \hat{\dot{x}}(t)
\end{aligned}
$$

for sufficiently small T (the sampling interval)

- This is formally known as the Backward Euler (BE), or backward difference method for differentiation approximation
- In addition to BE, we'll look at Forward Euler (FE), BiLinear Transform (BLT), and a few others
- For a more advanced treatment of finite difference schemes, see Numerical Sound Synthesis by Stefan Bilbao (2009, Wiley)

Backward Euler Finite-Difference Equation for a Force-Driven Mass

- Newton's $f=m a$ can be written in terms of force f and velocity v or momentum $p=m v$ as

$$
f(t)=m \dot{v}(t)=\dot{p}(t)
$$

- The backward-difference substitution gives

$$
f(n T) \approx m \frac{v(n T)-v[(n-1) T]}{T} \triangleq m \hat{\dot{v}}(n T)
$$

for $n=0,1,2, \ldots$ Or, in a lighter notation,

$$
f_{n} \approx m \frac{v_{n}-v_{n-1}}{T} \triangleq m \hat{\dot{v}}_{n}, \quad n=0,1,2, \ldots
$$

with $v_{-1} \triangleq 0$

- We often use a "hat" to denote approximation: $\hat{v} \approx v$
- In this case, \hat{v}_{n} is more accurately written as $\hat{\dot{v}}_{n-1 / 2}$
- Solving for v_{n} yields a difference equation (finite difference scheme):

$$
\hat{v}_{n}=\hat{v}_{n-1}+\frac{T}{m} f_{n}, \quad n=0,1,2, \ldots
$$

with $\hat{v}_{-1} \triangleq 0$

Summary of Backward Euler

$$
\begin{aligned}
v_{n} & =v_{n-1}+T \hat{\dot{v}}_{n} \\
& \Longleftrightarrow \hat{\dot{\hat{i}}}_{n}=\frac{v_{n}-v_{n-1}}{T} \\
\hat{\imath} & =\hat{\imath} \\
V(z) & =z^{-1} V(z)+T \hat{\dot{V}}(z) \\
\Rightarrow & \hat{\dot{V}}(z)=\frac{1-z^{-1}}{T} V(z)
\end{aligned}
$$

Expressing BE as a conformal map from s to z :

$$
s \leftarrow \frac{1-z^{-1}}{T}
$$

The ideal differentiator $H(s)=s$, which is a first-order continuous-time LTI filter, is mapped to a first-order discrete-time LTI filter $H(z)=\left(1-z^{-1}\right) / T$.

Accuracy of Backward Euler

Suppose we take the backward-difference approximation $f_{n}=(m / T)\left(v_{n}-v_{n-1}\right)$, and expand v_{n-1} in Taylor series about v_{n}. This yields:

$$
\begin{aligned}
f_{n} & =\frac{m}{T}\left(v_{n}-\left(v_{n}-\left.T \frac{d v}{d t}\right|_{n T}+\mathcal{O}\left(T^{2}\right)\right)\right) \\
& =\left.m \frac{d v}{d t}\right|_{n T}+\mathcal{O}(T)
\end{aligned}
$$

- We say that the backward difference approximation has an error of order T, written $\mathcal{O}(T)$
- The order of the error tells us how fast the error approaches zero as the sampling rate $f_{s}=1 / T$ approaches infinity
- Backward Euler maps infinite frequency $s=\infty$ to $z=0$ (maximally damped), while trapezoidal rule (bilinear transform) maps $s=\infty$ to $z=-1$ (no damping introduced)

Delay-Free Loops

Backward-Euler numerical integrator:

$$
v_{n}=v_{n-1}+T \hat{\dot{v}}_{n}
$$

Corresponding BE digital mass model:

$$
\hat{v}_{n}=\hat{v}_{n-1}+\frac{T}{m} f_{n}
$$

where \hat{v}_{n} is the nth sample of the estimated velocity, f_{n} is the driving force at sample n, m is the mass, and T is the sampling interval

- Note that a delay-free loop appears if f_{n} depends on v_{n} (e.g., due to friction):

$$
\hat{v}_{n}=\hat{v}_{n-1}+\frac{T}{m} f_{n}\left(\hat{v}_{n}\right)
$$

- In such a case, the difference equation is not computable in this form
- Non-computable finite-differences schemes such as this are said to be implicit
- We can address this by using a forward-difference ("Forward Euler") in place of a backward difference

Forward-Euler (FE)

The backward difference was based on the usual left-sided limit in the definition of the time derivative:

$$
\dot{x}(t)=\lim _{\delta \rightarrow 0} \frac{x(t)-x(t-\delta)}{\delta} \approx \frac{x_{n}-x_{n-1}}{T}
$$

The forward difference comes from the right-sided limit:

$$
\dot{x}(t)=\lim _{\delta \rightarrow 0} \frac{x(t+\delta)-x(t)}{\delta} \approx \frac{x_{n+1}-x_{n}}{T}
$$

- As $T \rightarrow 0$, the forward and backward difference approximations approach the same limit, because $x(t)$ is assumed continuous and differentiable at t
- The forward difference gives an explicit finite difference scheme for the force-driven-mass problem above, even if the driving force f_{n} depends on current velocity v_{n} :

$$
\hat{v}_{n+1}=\hat{v}_{n}+\frac{T}{m} f_{n}, \quad n=0,1,2, \ldots
$$

with $v_{0} \triangleq 0$

- We obtain the same finite-difference scheme by introducing an ad hoc delay in the driving force of the Backward Euler scheme to get $\hat{v}_{n}=\hat{v}_{n-1}+(T / m) f_{n-1}$ 17

Trapezoidal Rule for Numerical Integration

The velocity $v(t)$ can be written as

$$
v(t)=v(0)+\left(\int_{0}^{t} \dot{v}(\tau) d \tau\right)
$$

In particular,

$$
\begin{aligned}
v(n T) & =v(0)+\int_{0}^{(n-1) T} \dot{v}(\tau) d \tau+\int_{(n-1) T}^{n T} \dot{v}(\tau) d \tau \\
& =v[(n-1) T]+\int_{(n-1) T}^{n T} \dot{v}(\tau) d \tau \\
& \approx v[(n-1) T]+T \frac{\dot{v}[(n-1) T]+\dot{v}(n T)}{2}
\end{aligned}
$$

- This approximation replaces a one-sample integral by the area under the trapezoid having vertices $(n-1,0),\left(n-1, \dot{v}_{n-1}\right),(n, 0),\left(n, \dot{v}_{n}\right)$
- In other words, $\dot{v}(t)$ is approximated by a straight line between time $n-1$ and n
- This is a first-order approximation of $\dot{v}(t)$ in contrast to the zero-order approximation used by forward and backward Euler schemes

Centered Finite Difference

Backward Euler [$\left.s \leftarrow\left(1-z^{-1}\right) / T\right)$] has a $1 / 2$ sample delay at all frequencies, while Forward Euler $[s \leftarrow(z-1) / T)]$ has a $1 / 2$ sample advance. We can eliminate this time-skew using a
centered finite difference:

$$
\begin{aligned}
\hat{\dot{v}}(n T) & =\frac{v_{n+1}-v_{n-1}}{2 T} \\
\Rightarrow \quad f_{n} & \approx \frac{m}{2 T}\left(v_{n+1}-v_{n-1}\right) \\
\Rightarrow \quad \hat{v}_{n+1} & =\hat{v}_{n-1}+\frac{2 T}{m} f_{n}
\end{aligned}
$$

- No time delay or advance
- Compare the Leapfrog integrator
- s to z mapping is

$$
s=\frac{z-z^{-1}}{2 T} \rightarrow \frac{e^{j \omega T}-e^{-j \omega T}}{2 T}=j \frac{\sin (\omega T)}{T} \approx j \omega
$$

at low frequencies, but note how it reaches a maximum at $\omega T=\pi / 2$ and comes back down to 0 at $\omega T=\pi$

18

- We will see that the commonly used bilinear transform is equivalent
- Model is exact if driving force is piecewise linear, having a constant slope over each sampling interval
- (Backward Euler is similarly exact for a piecewise-constant driving force)

Bilinear Transform as Compensated BE/FE

In Newton's law $f=m \dot{v}$, look at the Backward Euler (BE) approximation of the time-derivative:

$$
f(t)=m \dot{v} \approx m \frac{v(t)-v(t-T)}{T}
$$

We see there is a $1 / 2$ sample delay in the first-order difference on the right. This misaligns the force $f(t)$ and subsequent velocity by half a sample. A very simple delay compensation is to use a two-point average on the left:

$$
\frac{f(n)+f(n-1)}{2} \approx m \frac{v(n)-v(n-1)}{T}
$$

The extra attenuation at high frequencies due to the two-point average actually helps. Taking the z transform:

$$
\frac{1+z^{-1}}{2} F(z) \approx m \frac{1-z^{-1}}{T} V(z)
$$

or

$$
F(z) \approx m\left(\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}\right) V(z)
$$

which is the bilinear transform of $F(s)=m s V(s)$:

$$
s \mapsto \frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}
$$

Filter Design Approach

We've been talking about the white-box approach in which every first-order element (mass, spring, ...) is explicitly modeled by a first-order finite-difference scheme. This is especially needed for elements that are time varying or pushed into nonlinear regimes of operation.
When a system is linear and time-invariant (LTI), there is no need for such fine-grained modeling, and we can take a a black-box approach, in which we need only model the frequency response from the input(s) to output(s) of the system using a digital filter.

Frequency Warping is the Only Error

We have

$$
F(z) \approx m\left(\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}\right) V(z)
$$

using the bilinear transform (trapezoidal integration in the time domain)
Let's look along the unit circle in the z plane:
$\frac{F\left(e^{j \omega T}\right)}{V\left(e^{j \omega T}\right)} \approx m\left(\frac{2}{T} \frac{1-e^{-j \omega T}}{1+e^{-j \omega T}}\right)=m j\left(\frac{2}{T} \tan \left(\frac{\omega T}{2}\right)\right)$
Since the exact formula is $F\left(e^{j \omega T}\right) / V\left(e^{j \omega T}\right)=m j \omega$, we can push all of the error into a frequency warping:

$$
\omega_{d} \triangleq \frac{2}{T} \tan \left(\frac{\omega_{a} T}{2}\right)
$$

- Frequency-warping is the only error over the unit circle when using the bilinear transform
- What started out as different gain errors on the left and right became the correct gains at warped frequency locations
- Frequency-warping implications should also be considered in the time domain

22

Filter Design Approach to Ideal Integrators and Differentiators

Consider the following simple cases:

- Integrator: $H(s)=1 / s$
(e.g., force-driven mass with a velocity output)
- Differentiator: $H(s)=s$
(e.g., force-driven spring with a velocity output)

The digital filter design formulation typically minimizes frequency-response error with respect to the filter coefficients

Ideal Frequency Responses
Ideal Differentiator Frequency Response

- Ideal Digital Integrator

$$
H\left(e^{j \omega T}\right)=\frac{1}{j \omega}, \quad \omega \in[-\pi / T, \pi / T]
$$

- Ideal Digital Differentiator:

$$
H\left(e^{j \omega T}\right)=j \omega, \quad \omega \in[-\pi / T, \pi / T]
$$

- Exact match is not possible in finite order
- Minimize $\left\|H\left(e^{j \omega T}\right)-\hat{H}\left(e^{j \omega T}\right)\right\|$ where \hat{H} is the digital filter frequency response and $\|E\|$ denotes some norm of E
- This is a digital filter design formulation

Explicit and Implicit Finite Difference Schemes

Explicit:

$$
y_{n+1}=x_{n}+f\left(y_{n}\right)
$$

Implicit:

$$
y_{n+1}=x_{n}+f\left(y_{n+1}\right)
$$

- A finite difference scheme is said to be explicit when it can be computed forward in time using quantities from previous time steps
- We will associate explicit finite difference schemes with causal digital filters
- In implicit finite-difference schemes, the output of the time-update (y_{n+1} above) depends on itself, so a causal recursive computation is not specified
- Implicit schemes are generally solved using
- iterative methods (such as Newton's method) in nonlinear cases, and
- matrix-inverse methods for linear problems
- Implicit schemes are typically used offline (not in real time)

- Discontinuity at $z=-1 \Rightarrow$ no exact solution (polynomial approximation over the unit circle)
- Need oversampling and a don't-care band at high frequencies (e.g., 20 kHz to 22.05 kHz)
- The frequency response can be arbitrary between the upper limit of human hearing (20 kHz) and $f_{s} / 2$
- A small increment in oversampling factor yields a large decrease in required filter order for a given spec

26

Semi-Implicit Finite Difference Schemes

- Implicit schemes can often be converted to explicit schemes (e.g., for real-time usage) by limiting the number of iterations used to solve the implicit scheme
- These are called semi-implicit finite-difference schemes
- Iterative convergence is generally improved by working at a very high sampling rate, and by initializing each iteration to the solution for the previous sample
- See the 2009 CCRMA/EE thesis by David Yeh ${ }^{1}$ for semi-implicit schemes for real-time computational modeling of nonlinear analog guitar effects (such as overdrive distortion)
- Convex optimization methods can be used to develop powerful new semi-implicit finite-difference schemes: http://www.stanford.edu/~ ${ }^{\text {boyd/cvxbook/ }}$

Recall the mass m sliding on friction μ :

ODE:

$$
\begin{aligned}
f(t) & =m \ddot{x}(t)+\mu v(t) \\
& =m \ddot{x}(t)+\mu \dot{x}(t)
\end{aligned}
$$

Take the Laplace Transform of both sides and apply the differentiation theorem (three times):

$$
\begin{aligned}
F(s) & =m\left[s^{2} X(s)-s x(0)-\dot{x}(0)\right]+\mu[s X(s)-x(0)] \\
& =m s^{2} X(s)+\mu s X(s)
\end{aligned}
$$

assuming zero initial conditions $x(0)=\dot{x}(0)=0$.
Force-to-Velocity Transfer Function
(often called the "admittance" or "mobility"):

$$
H(s) \triangleq \frac{V(s)}{F(s)}=\frac{s X(s)}{F(s)}=\frac{1}{m s+\mu}
$$

29

Properties of the Bilinear Transform

The bilinear transform maps an s-plane transfer function $H_{a}(s)$ to a z-plane transfer function:

$$
H_{d}(z) \triangleq H_{a}\left(c \frac{1-z^{-1}}{1+z^{-1}}\right)
$$

We can observe the following properties of the bilinear transform:

- Analog dc $(s=0)$ maps to digital dc $(z=1)$
- Infinite analog frequency $(s=\infty)$ maps to the maximum digital frequency $(z=-1)$
- The entire $j \omega$ axis in the s plane (where $s \triangleq \sigma+j \omega$) is mapped exactly once around the unit circle in the z plane (rather than summing around it infinitely many times, or "aliasing" as it does in ordinary sampling)
- Stability is preserved (when c is real and positive)
- Order of the transfer function is preserved
- Choose c to map any particular finite frequency (such as a resonance frequency) from the $j \omega_{a}$ axis in the s plane to a particular desired location on the unit circle $e^{j \omega_{d}}$ in the z plane. Other frequencies are "warped".

The bilinear transform is a one-to-one mapping from the s plane to the z plane:

$$
\begin{aligned}
s & =c \frac{1-z^{-1}}{1+z^{-1}}, \quad c>0, \quad c=\frac{2}{T} \quad \text { (typically) } \\
\Rightarrow \quad z & =\frac{1+s / c}{1-s / c}
\end{aligned}
$$

Starting with a continuous-time transfer function $H_{a}(s)$, we obtain the discrete-time transfer function

$$
H_{d}(z) \triangleq H_{a}\left(c \frac{1-z^{-1}}{1+z^{-1}}\right)
$$

where " d " denotes "digital," and " a " denotes "analog."

Bilinear Transform of Force-Driven Mass

We have, from $f=m \dot{v} \leftrightarrow F(s)=m s V(s)$,

$$
V(s)=\frac{1}{m s} F(s)
$$

Setting $s=(2 / T)\left(1-z^{-1}\right) /\left(1+z^{-1}\right)$ according to the bilinear transform yields

$$
V_{d}(z)=\frac{T}{2 m} \frac{1+z^{-1}}{1-z^{-1}} F_{d}(z)
$$

where we defined

$$
\begin{aligned}
& F_{d}(z)=F\left(\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}\right) \\
& V_{d}(z)=V\left(\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}\right)
\end{aligned}
$$

The resulting finite-difference scheme is then

$$
v_{d}(n)-v_{d}(n-1)=\frac{T}{2 m}\left[f_{d}(n)+f_{d}(n-1)\right]
$$

i.e.,

$$
v_{d}(n)=v_{d}(n-1)+\frac{T}{2 m}\left[f_{d}(n)+f_{d}(n-1)\right]
$$

We see that this is the same as the backward Euler scheme plus a new term $(T / 2 m) f_{d}(n-1)$.

We can easily interpolate between Backward Euler and Bilinear Transform:

$$
s \rightarrow \frac{1+\alpha}{T} \frac{1-z^{-1}}{1+\alpha z^{-1}}
$$

- $\alpha=0$ gives Backward Euler (high-frequency modes artificially damped)
- $\alpha=1$ gives Bilinear Transform (high-frequency modes artificially squeezed in frequency)
- Intermediate α allows optimization of another consideration, such as decay time
- Low-frequency response approximately invariant, dc maps to dc in every case

Example: Leaky Integrator

$$
\begin{aligned}
H_{a}(s) & =\frac{1}{s+\epsilon} \longrightarrow H_{d}(z)=\frac{1}{\frac{1+\alpha}{T} \frac{1-z^{-1}}{1+\alpha z^{-1}}+\epsilon} \\
& =g \frac{1+\alpha z^{-1}}{1-p z^{-1}}, \quad p=\frac{1-\alpha \frac{\epsilon T}{1+\alpha}}{1+\frac{\epsilon T}{1+\alpha}}, \quad g=\frac{T}{1+\alpha+\epsilon T}
\end{aligned}
$$

33

Backward Difference Conformal Map

We saw that the backwards difference substitution can be seen as a conformal map taking the s plane to the z plane:

$$
s \rightarrow \frac{1-z^{-1}}{T}
$$

Look at the image of the $j \omega$ axis under this mapping:

The continuous-time frequency axis, $s=j \omega$, is not mapped to the discrete-time frequency axis (unit circle):

- dc $(s=0)$ mapped to dc $(z=1)$
- infinite frequency mapped to $(z=0)$

This means artificial damping will be introduced for high-frequency system resonances

For the Trapezoid Rule (bilinear transform),

$$
f_{n}=\left.m \frac{d v}{d t}\right|_{n T}+\mathcal{O}\left(T^{2}\right)
$$

so it is second-order accurate in T
We will come back to this below

34

Laplace Analysis of Trapezoidal Rule

The z transform of the trapezoid rule yields

$$
F(z)=\frac{2 m}{T} \frac{1-z^{-1}}{1+z^{-1}} V(z)
$$

Since $F(s)=m s V(s)$, the s to z mapping has become

$$
s \rightarrow \frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}
$$

which is of course the standard bilinear transform:

- $s=j \omega$ axis maps to the $|z|=1$ unit circle where it belongs
- dc maps to dc
- Infinite frequency maps to half the sampling rate
- Frequency axis is warped, especially at high frequencies
- Stability preserved precisely

Trapezoidal Rule Frequency Mapping
Let's look at the s to z mapping,

$$
s=\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}
$$

on the unit circle, where $s=j \omega_{a}$ and $z=e^{j \omega_{d} T}$:

$$
j \omega_{a}=\frac{2}{T} \frac{1-e^{-j \omega_{d} T}}{1+e^{-j \omega_{d} T}}=j \frac{2}{T} \tan \left(\omega_{d} T / 2\right)
$$

or

$$
\frac{\omega_{a} T}{2}=\tan \left(\frac{\omega_{d} T}{2}\right)
$$

- Near dc $\left(\omega_{d}=0\right)$, we have

$$
\omega_{a}=\frac{2}{T} \tan \left(\omega_{d} T / 2\right)=\omega_{d}+\mathcal{O}\left(T^{3}\right)
$$

where, since $\tan (\theta)$ is odd, there are no even-order terms in its series expansion

In general, the trapezoid rule is a second-order accurate approximation to a derivative, in the limit of small T (i.e., near dc). Here, it is third-order accurate along the unit circle at dc.

$$
37
$$

Why Don't We Always Use the Bilinear Transform?

- Backward Euler (BE) is still sometimes needed:
- Damps out unwanted high-frequency oscillations (warped)
- Avoids oscillations at half the sampling rate from a real exponential
* TR warps high-frequency poles toward half the sampling rate:

$$
s=g^{\prime} \cdot\left(1-z^{-1}\right) /\left(1+z^{-1}\right)
$$

toward $z=-1 \leftrightarrow(-1)^{n}$

* BE warps high-frequency poles toward $z=0$ so it never introduces alternating-sign oscillations:

$$
s=g \cdot\left(1-z^{-1}\right)
$$

* Alternating-sign oscillations due to BLT can be problematic in nonlinear circuits such as those containing diodes (see Kurt Werner thesis for a real-world example)
- Recall also that Forward Euler (FE) can break a delay-free loop, and pairs well with BE in series

Summary of Backward Euler vs. Trapezoidal Rule

For

$$
\begin{aligned}
f(t) & =m a(t)=m \dot{v}(t)=\dot{p}(t) \\
& =\lim _{T \rightarrow 0} \frac{p(t)-p(t-T)}{T} \approx \frac{p(t)-p(t-T)}{T}
\end{aligned}
$$

- Backward Euler (BE)

$$
f_{n}=\frac{1}{T}\left(p_{n}-p_{n-1}\right)
$$

is $\mathcal{O}(T)$ (first-order accurate in T)

- Bilinear Transform, or Trapezoid Rule (TR)

$$
f_{n}=\frac{2}{T}\left(p_{n}-p_{n-1}\right)-f_{n-1},
$$

is $\mathcal{O}\left(T^{2}\right)$ (second-order accurate in T)

- A continuum of transforms

$$
s=\frac{1+\alpha}{T} \frac{1-z^{-1}}{1+\alpha z^{-1}}
$$

exists between $B E$ and $T R$ and can be optimized for the application at hand (see Kurt Werner thesis and Germain and Werner DAFx-15 paper for details-Germain thesis coming soon)

Physical Model Formulations

Reminder of the various kinds of physical model representations we are considering:

- Ordinary Differential Equations (ODE)
- Partial Differential Equations (PDE)
- Difference Equations (DE)
- Finite Difference Schemes (FDS)
- (Physical) State Space Models
- Transfer Functions (between physical signals)
- Modal Representations (Parallel Second-Order Filters)
- Equivalent Circuits
- Impedance Networks
- Wave Digital Filters (WDF)
- Digital Waveguide (DW) Networks

We are mainly concerned with real-time computational physical models

State-Space Models

The state space formulation replaces an N th-order ODE by a vector first-order ODE.

Review of discrete-time case:

$$
\begin{aligned}
\underline{x}(n+1) & =\mathbf{A} \underline{x}(n)+\mathbf{B} \underline{u}(n) \\
\underline{y}(n) & =\mathbf{C} \underline{x}(n)+\mathbf{D} \underline{u}(n)
\end{aligned}
$$

where

- $\underline{x}(n) \in \mathbb{R}^{N}=$ state vector at time n
- $\underline{u}(n)=p \times 1$ vector of inputs
- $\underline{y}(n)=q \times 1$ output vector
- $\mathbf{A}=N \times N$ state transition matrix
- $\mathbf{B}=N \times p$ input coefficient matrix
- $\mathbf{C}=q \times N$ output coefficient matrix
- $\mathbf{D}=q \times p$ direct path coefficient matrix

The state-space representation is especially powerful for

- multi-input, multi-output (MIMO) linear systems
- time-varying linear systems
(every matrix can have a time subscript n)

41

Continuous-Time State Space Models:

In continuous time, we obtain a first-order vector ODE in which a vector of state time-derivatives is driven by linear combinations of state variables:

$$
\begin{aligned}
\underline{x}(t) & =\mathbf{A} \underline{x}(t)+\mathbf{B} \underline{u}(t) \\
\underline{y}(t) & =\mathbf{C} \underline{x}(t)+\mathbf{D} \underline{u}(t)
\end{aligned}
$$

State-Space Advantages:

- State-space models are used extensively in advanced modeling applications
- Extensive support in Matlab, with many numerically excellent associated tools and techniques (such as the singular value decomposition, to name one)
- Analytically powerful for theory work
- Example: Solution of $\underline{\dot{x}}(t)=\mathbf{A} \underline{x}(t)$ is $\underline{x}(t)=e^{A t} \underline{x}(0)$, where the matrix exponential is defined as

$$
e^{\mathbf{A} t} \triangleq I+\mathbf{A} t+\frac{1}{2} \mathbf{A}^{2} t^{2}+\frac{1}{3!} \mathbf{A}^{3} t^{3}+\cdots
$$

- We won't do much with state-space modeling in this class, but you should know it exists and that it should be considered for larger, more complex systems than we will be dealing with

42
where $z u_{n} \stackrel{\Delta}{=} u_{n+1}$
More sophisticated methods will digitize in a manner that conserves energy and/or momentum

Recommended Related Courses at Stanford

- Math 226
- AA 214 A/B/C
- ME 300 A/B/C
- ME 335 A/B/C
to get, letting $g=(1+\alpha) / T$ and defining $\underline{x}_{n}=\underline{x}(n T)$,

$$
\begin{aligned}
\frac{\underline{x}_{n}-\underline{x}_{n-1}}{T} & =\mathbf{A}\left[\frac{\underline{x}_{n}+\alpha \underline{x}_{n-1}}{1+\alpha}\right]+\mathbf{B}\left[\frac{\underline{u}_{n}+\alpha \underline{u}_{n-1}}{1+\alpha}\right] \\
\underline{y}_{n} & =\mathbf{C} \underline{x}_{n}+\mathbf{D} \underline{u}_{n}
\end{aligned}
$$

for zero initial conditions $\underline{x}(0)=\underline{0} \Rightarrow$

$$
\begin{aligned}
\underline{x}_{n+1} & =\left(I-\mathbf{A} \frac{T}{1+\alpha}\right)^{-1}\left(I+\mathbf{A} \frac{\alpha T}{1+\alpha}\right) \underline{x}_{n} \\
& +\left(I-\mathbf{A} \frac{T}{1+\alpha}\right)^{-1} \mathbf{B} T\left(\frac{z+\alpha}{1+\alpha}\right) u_{n}
\end{aligned}
$$

