
Music 420 Lecture
Elementary Finite Different Schemes

Julius O. Smith III (jos@ccrma.stanford.edu)
Center for Computer Research in Music and Acoustics (CCRMA)

Department of Music, Stanford University
Stanford, California 94305

June 27, 2020

Outline

• White Box and Black Box Physical Modeling

• Ordinary Differential Equations

– Equivalent Circuits

– Reference Directions

– Examples

• Difference Equations (Finite Difference Schemes)

– Backward Euler (BE)

– Forward Euler (FE)

– Trapezoidal Rule for Numerical Integration

– Bilinear Transform (BLT)

• Digital Filter Design Formulation

1

Two Approaches to Physical Modeling

1. “White Box” Modeling:

(a) Find the describing differential equations from
basic physical principles

(b) Digitize the differential equations to obtain
difference equations implemented in software

2. “Black Box” Modeling:

(a) Measure the system response to a representative
set of input signals

(b) Fit a computational model to the measured
input-output set

(c) In the Linear, Time-Invariant (LTI) case, a
Multi-Input, Multi-Output (MIMO) digital filter
will suffice

This class blends white- and black-box approaches:

1. LTI sections become fast, accurate digital filters

2. Nonlinear or rapidly time-varying subsystems normally
get a white-box approach (reeds, hammers, bows, . . .)

2

http://ccrma.stanford.edu/~jos
http://ccrma.stanford.edu/
http://www.stanford.edu/group/Music/
http://www.stanford.edu/

Ordinary Differential Equations

Ordinary Differential Equations (ODEs) typically result
from Newton’s laws of motion:

f (t) = ma(t) (Force = Mass times Acceleration)

Acceleration a(t) relates to velocity v(t) and position
x(t) by differentiation with respect to time t:

a(t)
∆
= v̇(t)

∆
=

d ẋ(t)

dt
∆
= ẍ(t)

∆
=

d2x(t)

dt2

Physical Diagram:

f(t)

x = 0

a(t), v(t), x(t)

m

Force f (t) driving mass m along frictionless surface

3

Equivalent Circuit for a Force-Driven Mass

m

+
f (t)

+

v(t)

• Mass m is an inductor L = m Henrys

• Driving force f (t) is a voltage source

• Mass velocity v(t) is the loop current

The ODE is obtained from the equivalent circuit by
summing all “voltages” around the current loop to zero
to obtain

−f (t) +mv̇ = 0

The minus sign for f (t) occurs because the current arrow
entered the minus side of the “voltage source”

4

Reference Directions in Equivalent Circuits

m

+
f (t)

+

v(t)

−f (t) +mv̇ = 0

• “Reference directions” (±) on the voltage source and
circuit elements may be chosen arbitrarily—just keep
track and be consistent

• When f (t) is positive, “current” is pushed from its +
to its − terminal, i.e., v(t) will be positive if the rest
of the circuit is just a wire or a resistor

• The “force drop” across the mass m is positive when
v(t) increases in the direction going from its + to −
terminal. This can be interpreted as the inertial
reaction force of the mass that opposed the external
applied force (Newton’s first law of motion)

5

ODE for a Mass Sliding with Friction

x = 0

m
f(t)

µ v(t)

Force f (t) driving mass m along surface with friction
force µ v(t):

f (t) = mẍ(t) + µ v(t)

= mẍ(t) + µ ẋ(t)

• Note that the friction force is positive to the left in
this figure, i.e., it is a reaction force

• The inertial reaction force of the mass points to the
left as well (not shown, but equal to −f (t))

6

Force-Driven Mass with Friction
Diagram and Equivalent Circuit

f(t) m

µ

Force driving an ideal mass and dashpot

-

+

-
f(t)

+
+

-
m

µ

v(t)

fµ(t)

fm(t)

Equivalent Circuit

0 = −f (t) + fm + fµ

0 = −f (t) +m v̇(t) + µ v(t)

7

Mass-Spring ODE

An ideal spring described by Hooke’s law

f (t) = k x(t) = k

∫ t

0

v(τ) dτ ←→
V (s)

s

where k denotes the spring constant, x(t) denotes the
compressive spring displacement from rest at time t, and
f (t) is the force required for displacement x(t)

If the force on a mass is due to a spring then, as
discussed later, we may write the ODE as

k x(t) +mẍ(t) = 0

(Spring Force + Mass Inertial Force = 0)

Physical diagram:

m

x = 0

ẋ(t)→

x(t)→

k

8

Mass-Spring-Wall System

m

x = 0 x(t)→

fext(t)

fext(t)− fm(t)− fk(t) = 0

v(t)→

fm(t)

k

fk(t)

• Driving force fext(t) is to the right on the mass

• Driving force + mass inertial force + spring force = 0

• Mass velocity = spring velocity

• This is a series combination of the spring and mass

If two physical elements are connected so that they share
a common velocity, then they are said to be formally
connected in series

9

Equivalent Circuit for Mass-Spring-Wall

The “series” nature of the connection becomes more
clear when the equivalent circuit is considered:

-

-

+

fext(t)
-

+

vm(t) = vk(t)

+↔ voltage source Spring k ↔ Capacitance C = 1
k

(impedance Rk(s) =
k
s)

Mass m ↔ Inductance L = m
(impedance Rm(s) = ms)

fm(t)

fk(t)

• The driving force is applied to the mass such that a
positive force results in a positive mass displacement
and positive spring displacement (compression)

• The common mass and spring velocity appear as a
single current running through the inductor and
capacitor that model the mass and spring, respectively

10

Mass-Spring-Dashpot ODE

If the mass is sliding with friction, then a simple ODE
model is given by

k x(t) + µ ẋ(t) +mẍ(t) = 0

(Spring + Friction + Inertial Forces = 0)

Physical diagram:

m

x = 0

k

µ

We will use such ODEs to model mass, spring, and
dashpot elements, and their equivalent circuits

11

Difference Equations
(Finite Difference Schemes)

• There are many methods for converting ODEs to
difference equations

• For white-box modeling, we’ll use a very simple,
order-preserving methods which replaces each
derivative or integral with a first-order finite
difference:

ẋ(t)
∆
=

d

dt
x(t)

∆
= lim

δ→0

x(t)− x(t− δ)

δ

≈
x(nT)− x[(n− 1)T]

T
∆
= ˆ̇x(t)

for sufficiently small T (the sampling interval)

• This is formally known as the Backward Euler (BE),
or backward difference method for differentiation
approximation

• In addition to BE, we’ll look at Forward Euler (FE),
BiLinear Transform (BLT), and a few others

• For a more advanced treatment of finite difference
schemes, see Numerical Sound Synthesis by
Stefan Bilbao (2009, Wiley)

12

Backward Euler Finite-Difference Equation for a
Force-Driven Mass

• Newton’s f = ma can be written in terms of force f
and velocity v or momentum p = mv as

f (t) = m v̇(t) = ṗ(t)

• The backward-difference substitution gives

f (nT) ≈ m
v(nT)− v[(n− 1)T]

T
∆
= m ˆ̇v(nT)

for n = 0, 1, 2, Or, in a lighter notation,

fn ≈ m
vn − vn−1

T
∆
= m ˆ̇vn, n = 0, 1, 2, . . .

with v−1
∆
= 0

• We often use a “hat” to denote approximation: v̂ ≈ v

• In this case, ˆ̇vn is more accurately written as ˆ̇vn−1/2

• Solving for vn yields a difference equation
(finite difference scheme):

v̂n = v̂n−1 +
T

m
fn, n = 0, 1, 2, . . .

with v̂−1
∆
= 0

13

Accuracy of Backward Euler

Suppose we take the backward-difference approximation
fn = (m/T)(vn − vn−1), and expand vn−1 in Taylor
series about vn. This yields:

fn =
m

T

(

vn −

(

vn − T
dv

dt

∣

∣

∣

∣

nT

+O(T 2)

))

= m
dv

dt

∣

∣

∣

∣

nT

+O(T)

• We say that the backward difference approximation
has an error of order T , written O(T)

• The order of the error tells us how fast the error
approaches zero as the sampling rate fs = 1/T
approaches infinity

• Backward Euler maps infinite frequency s =∞ to
z = 0 (maximally damped), while trapezoidal rule
(bilinear transform) maps s =∞ to z = −1 (no
damping introduced)

14

Summary of Backward Euler

vn = vn−1 + T ˆ̇vn

⇐⇒ ˆ̇vn =
vn − vn−1

T

l = l

V (z) = z−1V (z) + T ˆ̇V (z)

⇒ ˆ̇V (z) =
1− z−1

T
V (z)

Expressing BE as a conformal map from s to z:

s ←
1− z−1

T

The ideal differentiator H(s) = s, which is a first-order
continuous-time LTI filter, is mapped to a first-order
discrete-time LTI filter H(z) = (1− z−1)/T .

15

Delay-Free Loops

Backward-Euler numerical integrator:

vn = vn−1 + T ˆ̇vn

Corresponding BE digital mass model:

v̂n = v̂n−1 +
T

m
fn

where v̂n is the nth sample of the estimated velocity, fn
is the driving force at sample n, m is the mass, and T is
the sampling interval

• Note that a delay-free loop appears if fn depends on
vn (e.g., due to friction):

v̂n = v̂n−1 +
T

m
fn(v̂n)

• In such a case, the difference equation is not
computable in this form

• Non-computable finite-differences schemes such as
this are said to be implicit

• We can address this by using a forward-difference
(“Forward Euler”)in place of a backward difference

16

Forward-Euler (FE)

The backward difference was based on the usual
left-sided limit in the definition of the time derivative:

ẋ(t) = lim
δ→0

x(t)− x(t− δ)

δ
≈

xn − xn−1
T

The forward difference comes from the right-sided limit:

ẋ(t) = lim
δ→0

x(t + δ)− x(t)

δ
≈

xn+1 − xn
T

• As T → 0, the forward and backward difference
approximations approach the same limit, because x(t)
is assumed continuous and differentiable at t

• The forward difference gives an explicit finite
difference scheme for the force-driven-mass problem
above, even if the driving force fn depends on current
velocity vn:

v̂n+1 = v̂n +
T

m
fn, n = 0, 1, 2, . . .

with v0
∆
= 0

• We obtain the same finite-difference scheme by
introducing an ad hoc delay in the driving force of the
Backward Euler scheme to get
v̂n = v̂n−1 + (T/m)fn−1

17

Centered Finite Difference

Backward Euler [s← (1− z−1)/T)] has a 1/2 sample
delay at all frequencies, while Forward Euler
[s← (z − 1)/T)] has a 1/2 sample advance. We can
eliminate this time-skew using a
centered finite difference:

ˆ̇v(nT) =
vn+1 − vn−1

2T

⇒ fn ≈
m

2T
(vn+1 − vn−1)

⇒ v̂n+1 = v̂n−1 +
2T

m
fn

• No time delay or advance

• Compare the Leapfrog integrator

• s to z mapping is

s =
z − z−1

2T
→

ejωT − e−jωT

2T
= j

sin(ωT)

T
≈ jω

at low frequencies, but note how it reaches a
maximum at ωT = π/2 and comes back down to 0 at
ωT = π

18

Trapezoidal Rule for Numerical Integration

The velocity v(t) can be written as

v(t) = v(0) +

(
∫ t

0

v̇(τ)dτ

)

In particular,

v(nT) = v(0) +

∫ (n−1)T

0

v̇(τ)dτ +

∫ nT

(n−1)T
v̇(τ)dτ

= v[(n− 1)T] +

∫ nT

(n−1)T
v̇(τ)dτ

≈ v[(n− 1)T] + T
v̇[(n− 1)T] + v̇(nT)

2

• This approximation replaces a one-sample integral by
the area under the trapezoid having vertices
(n− 1, 0), (n− 1, v̇n−1), (n, 0), (n, v̇n)

• In other words, v̇(t) is approximated by a straight line
between time n− 1 and n

• This is a first-order approximation of v̇(t) in contrast
to the zero-order approximation used by forward and
backward Euler schemes

19

• We will see that the commonly used bilinear
transform is equivalent

• Model is exact if driving force is piecewise linear,
having a constant slope over each sampling interval

• (Backward Euler is similarly exact for a
piecewise-constant driving force)

Bilinear Transform as Compensated BE/FE

In Newton’s law f = mv̇, look at the Backward Euler
(BE) approximation of the time-derivative:

f (t) = m v̇ ≈ m
v(t)− v(t− T)

T

We see there is a 1/2 sample delay in the first-order
difference on the right. This misaligns the force f (t) and
subsequent velocity by half a sample. A very simple delay
compensation is to use a two-point average on the left:

f (n) + f (n− 1)

2
≈ m

v(n)− v(n− 1)

T

The extra attenuation at high frequencies due to the
two-point average actually helps. Taking the z transform:

1 + z−1

2
F (z) ≈ m

1− z−1

T
V (z)

20

or

F (z) ≈ m

(

2

T

1− z−1

1 + z−1

)

V (z)

which is the bilinear transform of F (s) = msV (s):

s 7→
2

T

1− z−1

1 + z−1

21

Frequency Warping is the Only Error

We have

F (z) ≈ m

(

2

T

1− z−1

1 + z−1

)

V (z)

using the bilinear transform (trapezoidal integration in
the time domain)

Let’s look along the unit circle in the z plane:

F (ejωT)

V (ejωT)
≈ m

(

2

T

1− e−jωT

1 + e−jωT

)

= mj

(

2

T
tan

(

ωT

2

))

Since the exact formula is F (ejωT)/V (ejωT) = mjω, we
can push all of the error into a frequency warping :

ωd
∆
=

2

T
tan

(

ωaT

2

)

• Frequency-warping is the only error over the unit
circle when using the bilinear transform

• What started out as different gain errors on the left
and right became the correct gains at warped
frequency locations

• Frequency-warping implications should also be
considered in the time domain

22

Filter Design Approach

We’ve been talking about the white-box approach in
which every first-order element (mass, spring, . . .) is
explicitly modeled by a first-order finite-difference
scheme. This is especially needed for elements that are
time varying or pushed into nonlinear regimes of
operation.

When a system is linear and time-invariant (LTI), there is
no need for such fine-grained modeling, and we can take
a a black-box approach, in which we need only model the
frequency response from the input(s) to output(s) of the
system using a digital filter.

23

Filter Design Approach to Ideal Integrators
and Differentiators

Consider the following simple cases:

• Integrator: H(s) = 1/s
(e.g., force-driven mass with a velocity output)

• Differentiator: H(s) = s
(e.g., force-driven spring with a velocity output)

The digital filter design formulation typically minimizes
frequency-response error with respect to the filter
coefficients

24

Ideal Frequency Responses

• Ideal Digital Integrator

H(ejωT) =
1

jω
, ω ∈ [−π/T, π/T]

• Ideal Digital Differentiator:

H(ejωT) = jω, ω ∈ [−π/T, π/T]

• Exact match is not possible in finite order

• Minimize
∥

∥

∥
H(ejωT)− Ĥ(ejωT)

∥

∥

∥
where Ĥ is the

digital filter frequency response and ‖E ‖ denotes
some norm of E

• This is a digital filter design formulation

25

Ideal Differentiator Frequency Response

Re

Im

Gain

Re

Im

Gain

• Discontinuity at z = −1 ⇒ no exact solution
(polynomial approximation over the unit circle)

• Need oversampling and a don’t-care band at high
frequencies (e.g., 20 kHz to 22.05 kHz)

• The frequency response can be arbitrary between the
upper limit of human hearing (20kHz) and fs/2

• A small increment in oversampling factor yields a
large decrease in required filter order for a given spec

26

Explicit and Implicit Finite Difference Schemes

Explicit:
yn+1 = xn + f (yn)

Implicit:
yn+1 = xn + f (yn+1)

• A finite difference scheme is said to be explicit when
it can be computed forward in time using quantities
from previous time steps

• We will associate explicit finite difference schemes
with causal digital filters

• In implicit finite-difference schemes, the output of the
time-update (yn+1 above) depends on itself, so a
causal recursive computation is not specified

• Implicit schemes are generally solved using

– iterative methods (such as Newton’s method) in
nonlinear cases, and

– matrix-inverse methods for linear problems

• Implicit schemes are typically used offline
(not in real time)

27

Semi-Implicit Finite Difference Schemes

• Implicit schemes can often be converted to explicit
schemes (e.g., for real-time usage) by limiting the
number of iterations used to solve the implicit scheme

• These are called semi-implicit finite-difference
schemes

• Iterative convergence is generally improved by working
at a very high sampling rate, and by initializing each
iteration to the solution for the previous sample

• See the 2009 CCRMA/EE thesis by David Yeh1 for
semi-implicit schemes for real-time computational
modeling of nonlinear analog guitar effects (such as
overdrive distortion)

• Convex optimization methods can be used to develop
powerful new semi-implicit finite-difference schemes:
http://www.stanford.edu/~boyd/cvxbook/

1http://ccrma.stanford.edu/~dtyeh

28

http://www.stanford.edu/~boyd/cvxbook/
http://ccrma.stanford.edu/~dtyeh

ODE Laplace Transform Analysis

Recall the mass m sliding on friction µ:

x = 0

m
f(t)

µ v(t)

ODE:

f (t) = mẍ(t) + µ v(t)

= mẍ(t) + µ ẋ(t)

Take the Laplace Transform of both sides and apply the
differentiation theorem (three times):

F (s) = m
[

s2X(s)− s x(0)− ẋ(0)
]

+ µ [sX(s)− x(0)]

= ms2X(s) + µ sX(s)

assuming zero initial conditions x(0) = ẋ(0) = 0.

Force-to-Velocity Transfer Function
(often called the “admittance” or “mobility”):

H(s)
∆
=

V (s)

F (s)
=

sX(s)

F (s)
=

1

ms + µ

29

Bilinear Transform

The bilinear transform is a one-to-one mapping from the
s plane to the z plane:

s = c
1− z−1

1 + z−1
, c > 0, c =

2

T
(typically)

⇒ z =
1 + s/c

1− s/c

Starting with a continuous-time transfer function Ha(s),
we obtain the discrete-time transfer function

Hd(z)
∆
= Ha

(

c
1− z−1

1 + z−1

)

where “d” denotes “digital,” and “a” denotes “analog.”

30

Properties of the Bilinear Transform

The bilinear transform maps an s-plane transfer function
Ha(s) to a z-plane transfer function:

Hd(z)
∆
= Ha

(

c
1− z−1

1 + z−1

)

We can observe the following properties of the bilinear
transform:

• Analog dc (s = 0) maps to digital dc (z = 1)

• Infinite analog frequency (s =∞) maps to the
maximum digital frequency (z = −1)

• The entire jω axis in the s plane (where s ∆
= σ + jω)

is mapped exactly once around the unit circle in the z
plane (rather than summing around it infinitely many
times, or “aliasing” as it does in ordinary sampling)

• Stability is preserved (when c is real and positive)

• Order of the transfer function is preserved

• Choose c to map any particular finite frequency (such
as a resonance frequency) from the jωa axis in the s
plane to a particular desired location on the unit circle
ejωd in the z plane. Other frequencies are “warped”.

31

Bilinear Transform of Force-Driven Mass

We have, from f = mv̇ ↔ F (s) = msV (s),

V (s) =
1

ms
F (s)

Setting s = (2/T)(1− z−1)/(1 + z−1) according to the
bilinear transform yields

Vd(z) =
T

2m

1 + z−1

1− z−1
Fd(z)

where we defined

Fd(z) = F

(

2

T

1− z−1

1 + z−1

)

Vd(z) = V

(

2

T

1− z−1

1 + z−1

)

The resulting finite-difference scheme is then

vd(n)− vd(n− 1) =
T

2m
[fd(n) + fd(n− 1)]

i.e.,

vd(n) = vd(n− 1) +
T

2m
[fd(n) + fd(n− 1)]

We see that this is the same as the backward Euler
scheme plus a new term (T/2m)fd(n− 1).

32

Hybrid Euler-Bilinear Mapping

We can easily interpolate between Backward Euler and
Bilinear Transform:

s→
1 + α

T

1− z−1

1 + α z−1

• α = 0 gives Backward Euler (high-frequency modes
artificially damped)

• α = 1 gives Bilinear Transform (high-frequency
modes artificially squeezed in frequency)

• Intermediate α allows optimization of another
consideration, such as decay time

• Low-frequency response approximately invariant,
dc maps to dc in every case

Example: Leaky Integrator

Ha(s) =
1

s + ǫ
−→ Hd(z) =

1
1+α
T

1−z−1

1+α z−1
+ ǫ

= g
1 + αz−1

1− pz−1
, p =

1− α ǫT
1+α

1 + ǫT
1+α

, g =
T

1 + α + ǫT

33

Accuracy of Trapezoidal Rule

For the Trapezoid Rule (bilinear transform),

fn = m
dv

dt

∣

∣

∣

∣

nT

+O(T 2)

so it is second-order accurate in T

We will come back to this below

34

Backward Difference Conformal Map

We saw that the backwards difference substitution can be
seen as a conformal map taking the s plane to the z
plane:

s→
1− z−1

T

Look at the image of the jω axis under this mapping:

The continuous-time frequency axis, s = jω, is not
mapped to the discrete-time frequency axis (unit circle):

• dc (s = 0) mapped to dc (z = 1)

• infinite frequency mapped to (z = 0)

This means artificial damping will be introduced for
high-frequency system resonances

35

Laplace Analysis of Trapezoidal Rule

The z transform of the trapezoid rule yields

F (z) =
2m

T

1− z−1

1 + z−1
V (z)

Since F (s) = msV (s), the s to z mapping has become

s→
2

T

1− z−1

1 + z−1

which is of course the standard bilinear transform:

• s = jω axis maps to the |z| = 1 unit circle where it
belongs

• dc maps to dc

• Infinite frequency maps to half the sampling rate

• Frequency axis is warped, especially at high
frequencies

• Stability preserved precisely

36

Trapezoidal Rule Frequency Mapping

Let’s look at the s to z mapping,

s =
2

T

1− z−1

1 + z−1

on the unit circle, where s = jωa and z = ejωdT :

jωa =
2

T

1− e−jωdT

1 + e−jωdT
= j

2

T
tan(ωdT/2)

or
ωaT

2
= tan

(

ωdT

2

)

• Near dc (ωd = 0), we have

ωa =
2

T
tan(ωdT/2) = ωd +O(T

3)

where, since tan(θ) is odd, there are no even-order
terms in its series expansion

In general, the trapezoid rule is a second-order accurate
approximation to a derivative, in the limit of small T
(i.e., near dc). Here, it is third-order accurate along the
unit circle at dc.

37

Summary of Backward Euler vs. Trapezoidal Rule

For

f (t) = ma(t) = m v̇(t) = ṗ(t)

= lim
T→0

p(t)− p(t− T)

T
≈

p(t)− p(t− T)

T

• Backward Euler (BE)

fn =
1

T
(pn − pn−1)

is O(T) (first-order accurate in T)

• Bilinear Transform, or Trapezoid Rule (TR)

fn =
2

T
(pn − pn−1)− fn−1,

is O(T 2) (second-order accurate in T)

• A continuum of transforms

s =
1 + α

T

1− z−1

1 + αz−1

exists between BE and TR and can be optimized for
the application at hand (see Kurt Werner thesis and
Germain and Werner DAFx-15 paper for
details—Germain thesis coming soon)

38

Why Don’t We Always Use the Bilinear
Transform?

• Backward Euler (BE) is still sometimes needed:

– Damps out unwanted high-frequency oscillations
(warped)

– Avoids oscillations at half the sampling rate from a
real exponential

∗ TR warps high-frequency poles toward half the
sampling rate:

s = g′ · (1− z−1)/(1 + z−1)

toward z = −1↔ (−1)n

∗ BE warps high-frequency poles toward z = 0 so
it never introduces alternating-sign oscillations:

s = g · (1− z−1)

∗ Alternating-sign oscillations due to BLT can be
problematic in nonlinear circuits such as those
containing diodes (see Kurt Werner thesis for a
real-world example)

• Recall also that Forward Euler (FE) can break a
delay-free loop, and pairs well with BE in series

39

Physical Model Formulations

Reminder of the various kinds of physical model
representations we are considering:

• Ordinary Differential Equations (ODE)

• Partial Differential Equations (PDE)

• Difference Equations (DE)

• Finite Difference Schemes (FDS)

• (Physical) State Space Models

• Transfer Functions (between physical signals)

• Modal Representations (Parallel Second-Order Filters)

• Equivalent Circuits

• Impedance Networks

• Wave Digital Filters (WDF)

• Digital Waveguide (DW) Networks

We are mainly concerned with real-time computational
physical models

40

State-Space Models

The state space formulation replaces an N th-order ODE
by a vector first-order ODE.

Review of discrete-time case:

x(n + 1) = A x(n) +B u(n)

y(n) = C x(n) +D u(n)

where

• x(n) ∈ R
N = state vector at time n

• u(n) = p× 1 vector of inputs

• y(n) = q × 1 output vector

• A = N ×N state transition matrix

• B = N × p input coefficient matrix

• C = q ×N output coefficient matrix

• D = q × p direct path coefficient matrix

The state-space representation is especially powerful for

• multi-input, multi-output (MIMO) linear systems

• time-varying linear systems
(every matrix can have a time subscript n)

41

Continuous-Time State Space Models:

In continuous time, we obtain a first-order vector ODE in
which a vector of state time-derivatives is driven by linear
combinations of state variables:

ẋ(t) = A x(t) +B u(t)

y(t) = C x(t) +D u(t)

State-Space Advantages:

• State-space models are used extensively in advanced
modeling applications

• Extensive support in Matlab, with many numerically
excellent associated tools and techniques (such as the
singular value decomposition, to name one)

• Analytically powerful for theory work

• Example: Solution of ẋ(t) = A x(t) is
x(t) = eAt x(0), where the matrix exponential is
defined as

eAt ∆
= I +At +

1

2
A2t2 +

1

3!
A3t3 + · · ·

• We won’t do much with state-space modeling in this
class, but you should know it exists and that it should
be considered for larger, more complex systems than
we will be dealing with

42

Digitizing State Space Models (Simplistically)

Starting with a continuous-time state-space model

ẋ(t) = A x(t) +B u(t)

y(t) = C x(t) +Du(t)

←→ sX(s)− x(0) = AX(s) +BU(s)

Y (s) = CX(s) +DU(s)

we can, e.g., apply Backward Euler, Trapezoidal Rule
(Bilinear Transform), or anything in between:

s = g
1− z−1

1 + αz−1
, α ∈ [0, 1]

to get, letting g = (1 + α)/T and defining xn = x(nT),

xn − xn−1
T

= A

[

xn + αxn−1
1 + α

]

+B

[

un + αun−1
1 + α

]

y
n
= C xn +Dun

for zero initial conditions x(0) = 0 ⇒

xn+1 =

(

I −A
T

1 + α

)−1(

I +A
αT

1 + α

)

xn

+

(

I −A
T

1 + α

)−1

BT

(

z + α

1 + α

)

un

43

where z un
∆
= un+1

More sophisticated methods will digitize in a manner that
conserves energy and/or momentum

Recommended Related Courses at Stanford

• Math 226

• AA 214 A/B/C

• ME 300 A/B/C

• ME 335 A/B/C

44

