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Two Approaches to Physical Modeling

1. "White Box" Modeling:
(a) Find the describing differential equations from
basic physical principles
(b) Digitize the differential equations to obtain
difference equations implemented in software
2. "Black Box" Modeling:
(a) Measure the system response to a representative
set of input signals

(b) Fit a computational model to the measured
input-output set

(c) In the Linear, Time-Invariant (LTI) case, a
Multi-Input, Multi-Output (MIMO) digital filter

will suffice

This class blends white- and black-box approaches:

1. LTI sections become fast, accurate digital filters

2. Nonlinear or rapidly time-varying subsystems normally
get a white-box approach (reeds, hammers, bows, .. .)


http://ccrma.stanford.edu/~jos
http://ccrma.stanford.edu/
http://www.stanford.edu/group/Music/
http://www.stanford.edu/

Ordinary Differential Equations

Ordinary Differential Equations (ODEs) typically result
from Newton's laws of motion:

f(t) = ma(t) (Force = Mass times Acceleration)

Acceleration a(t) relates to velocity v() and position
x(t) by differentiation with respect to time t:

A A di(t) A . A d’x(t)
a(t) = o(t) = s T(t) = s

Physical Diagram:
a(t), v(t), z(t) ==
T = 0

ft)—=m

Force f(t) driving mass m along frictionless surface

Equivalent Circuit for a Force-Driven Mass

e Mass m is an inductor L = m Henrys
e Driving force f(t) is a voltage source
e Mass velocity v(t) is the loop current
The ODE is obtained from the equivalent circuit by

summing all “voltages” around the current loop to zero
to obtain

—f(t)+m0=0
The minus sign for f(t) occurs because the current arrow
entered the minus side of the “voltage source”




Reference Directions in Equivalent Circuits ODE for a Mass Sliding with Friction

+ + M(t): m

Force f(t) driving mass m along surface with friction
force pv(t):

—f(t) +miv =0 f(t) = mi(t) + po(t)

e "Reference directions” (+) on the voltage source and
circuit elements may be chosen arbitrarily—just keep

_ e Note that the friction force is positive to the /eft in
track and be consistent

this figure, i.e., it is a reaction force

e When f(t) is positive, “current” is pushed from its +
to its — terminal, i.e., v(t) will be positive if the rest
of the circuit is just a wire or a resistor

e The inertial reaction force of the mass points to the
left as well (not shown, but equal to —f (7))

e The “force drop” across the mass m is positive when
v(t) increases in the direction going from its + to —
terminal. This can be interpreted as the inertial
reaction force of the mass that opposed the external
applied force (Newton's first law of motion)

ot
(=)



Force-Driven Mass with Friction
Diagram and Equivalent Circuit

L4
£t == m R

/

Force driving an ideal mass and dashpot

Equivalent Circuit

0 = _f(t>+fm+fu
0= —f(t)+mo(t)+ po(t)
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Mass-Spring ODE

An ideal spring described by Hooke's law

S

Ft) = kat) = k /0 o(r)dr s V5

where k denotes the spring constant, z(t) denotes the
compressive spring displacement from rest at time ¢, and
f(t) is the force required for displacement x(t)

If the force on a mass is due to a spring then, as
discussed later, we may write the ODE as

kx(t)+mi(t) = 0
(Spring Force + Mass Inertial Force = 0)

Physical diagram:




Mass-Spring-Wall System

foxs () = fm(t) — fu(t) =0

v(t) — .
fext (t)—> m f(SW
S ()=~ ~fx(?)

r=0 z(t) —

e Driving force fext(t) is to the right on the mass
e Driving force + mass inertial force + spring force = 0
e Mass velocity = spring velocity
e This is a series combination of the spring and mass
If two physical elements are connected so that they share

a common velocity, then they are said to be formally
connected in series
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Equivalent Circuit for Mass-Spring-Wall

The “series” nature of the connection becomes more
clear when the equivalent circuit is considered:

p Mass m <+ Inductance L =m
fext(t) @ (impedance R,,(s) = ms)
<> voltage source Spring k < Capacitance C' = +
Ti®) (impedance Rk&) =15 !

e The driving force is applied to the mass such that a
positive force results in a positive mass displacement
and positive spring displacement (compression)

e The common mass and spring velocity appear as a
single current running through the inductor and
capacitor that model the mass and spring, respectively

10



Mass-Spring-Dashpot ODE

If the mass is sliding with friction, then a simple ODE
model is given by

kx(t)+ pa(t) +mi(t) = 0
(Spring + Friction + Inertial Forces = 0)

Physical diagram:

14
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We will use such ODEs to model mass, spring, and
dashpot elements, and their equivalent circuits
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Difference Equations
(Finite Difference Schemes)

e There are many methods for converting ODEs to
difference equations

e For white-box modeling, we'll use a very simple,
order-preserving methods which replaces each
derivative or integral with a first-order finite
difference:

i(r) & ¢

A
" =

2(t) — x(t — 0)

1>

_x(nT)—z[(n—1T] a
~ = =
for sufficiently small 7" (the sampling interval)

z(t)

e This is formally known as the Backward Euler (BE),
or backward difference method for differentiation
approximation

e In addition to BE, we'll look at Forward Euler (FE),
BiLinear Transform (BLT), and a few others

e For a more advanced treatment of finite difference
schemes, see Numerical Sound Synthesis by
Stefan Bilbao (2009, Wiley)
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Backward Euler Finite-Difference Equation for a
Force-Driven Mass

e Newton's f = ma can be written in terms of force f
and velocity v or momentum p = muv as

ft) =mo(t) = p(t)

e The backward-difference substitution gives
v(nT) —vl(n—1T]) A -

f(nT) ~ m T = mo(nT)
form=0,1,2,.... Or, in a lighter notation,
Unp — Up— ~
fn =~ m-——nl 2 muv,, n=20,1,2,...

T
with v_; 2 0
e We often use a “hat” to denote approximation: v =~ v
e In this case, v, is more accurately written as 13,1,1/2

e Solving for v, yields a difference equation
(finite difference scheme):

. . T
Up = UTL—1+_frl7 n = 071727--'
m
with o_; 2 0
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Accuracy of Backward Euler

Suppose we take the backward-difference approximation
fo=(m/T)(v, —v,_1), and expand v,,_1 in Taylor

series about v,,. This yields:
m dv
n — T n n— 1T — OT2

e We say that the backward difference approximation
has an error of order T', written O(T)

e The order of the error tells us how fast the error
approaches zero as the sampling rate f, = 1/T
approaches infinity

e Backward Euler maps infinite frequency s = oo to
z = 0 (maximally damped), while trapezoidal rule
(bilinear transform) maps s = oo to z = —1 (no
damping introduced)

14



Summary of Backward Euler

Up = Up—1+ T{}n
— v Un — Ol
n T
I = )
V(z) = 2 'W(2)+ T‘}(z)
B 1 — 1
= V(z) = TZ V(z)

Expressing BE as a conformal map from s to z:

1—2z1

T

The ideal differentiator H(s) = s, which is a first-order
continuous-time LTI filter, is mapped to a first-order

discrete-time LTI filter H(z) = (1 — z71)/T.

S <
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Delay-Free Loops

Backward-Euler numerical integrator:

Up = Up-1 +Tvn

Corresponding BE digital mass model:
@n - ﬁn—l + an

m
where 0, is the nth sample of the estimated velocity, f,
is the driving force at sample n, m is the mass, and 7" is
the sampling interval

e Note that a delay-free loop appears if f,, depends on
vy, (e.g., due to friction):

. ) T . .
Up = Up_1+ _fn<vn)
m
e In such a case, the difference equation is not

computable in this form

e Non-computable finite-differences schemes such as
this are said to be implicit

e We can address this by using a forward-difference
(“Forward Euler”)in place of a backward difference

16



Forward-Euler (FE)

The backward difference was based on the usual
left-sided limit in the definition of the time derivative:
, _ox(t) —x(t—9) Ty — Ty
=1 ~~
£(t) 513(1) ) T

The forward difference comes from the right-sided limit:

t+90)—x(t n+l — Ty
jj(t):}sigg)x(—i—()s x()% a:HTx

e As T' — 0, the forward and backward difference
approximations approach the same limit, because z(t)
is assumed continuous and differentiable at ¢

e The forward difference gives an explicit finite
difference scheme for the force-driven-mass problem
above, even if the driving force f,, depends on current
velocity v,,:

. T
Upi1 = Up+—fn, n=0,1,2,...
m

with v 20

e We obtain the same finite-difference scheme by
introducing an ad hoc delay in the driving force of the
Backward Euler scheme to get

zA)n - @nfl + (T/m)fnfl
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Centered Finite Difference

Backward Euler [s <— (1 — 271)/T")] has a 1/2 sample
delay at all frequencies, while Forward Euler

[s = (2 —1)/T)] has a 1/2 sample advance. We can
eliminate this time-skew using a

centered finite difference:

2 Un+1 — Up—1
T) = L Tl
v(nT) T
m
= fn ~ ﬁ(anrl - vn—l)
2T

= Up+1l = Up—1+ _fn
m

e No time delay or advance
e Compare the Leapfrog integrator

e s to z mapping is

z—z7! T — g=dwT sin(wT)
S = =
2T 2T y

at low frequencies, but note how it reaches a
maximum at w7 = 7/2 and comes back down to 0 at
wl' =

N Jw

18



Trapezoidal Rule for Numerical Integration

The velocity v(t) can be written as

In particular,
(n—1)T nT
v(nT) = v(0)+/ ’i}(T)dTJr/ o(T)dr
0 (n—1)T
nl
= v[(n — DT —l—/ o(T)dr
(n=1)T

~ of(n - DT] + T 1>€] + 9(nT)

e This approximation replaces a one-sample integral by
the area under the trapezoid having vertices
(n - 17 O); (n - 17 vnfl% (na 0)7 (n, Un)

e In other words, v(t) is approximated by a straight line
between time n — 1 and n

e This is a first-order approximation of v(t) in contrast
to the zero-order approximation used by forward and
backward Euler schemes

19

e We will see that the commonly used bilinear
transform is equivalent

e Model is exact if driving force is piecewise linear,
having a constant slope over each sampling interval

e (Backward Euler is similarly exact for a
piecewise-constant driving force)

Bilinear Transform as Compensated BE/FE

In Newton's law f = mu, look at the Backward Euler
(BE) approximation of the time-derivative:

v(t) —v(t—T)

T
We see there is a 1/2 sample delay in the first-order
difference on the right. This misaligns the force f(t) and
subsequent velocity by half a sample. A very simple delay
compensation is to use a two-point average on the left:

fo) =) _ () v = 1)

2 N T

The extra attenuation at high frequencies due to the
two-point average actually helps. Taking the z transform:

14271 1— 2zt
F ~
;e = m—p

flt) = miv = m

V(z)

20



or Frequency Warping is the Only Error

21—271
F(z) = m (— > V(z)
T1+z1 We have
which is the bilinear transform of F(s) = msV(s): 91— o1
- F(z) = m | mo7—5 ) V()
21—271 T1+ =z
S —
T14 27! using the bilinear transform (trapezoidal integration in

the time domain)

Let's look along the unit circle in the z plane:

F(eT) 21 —e T (2 . wT
. ~ m|=————=| = mj|=tan | —

V(eiT) T1+e 0T I\T >

Since the exact formula is F'(e/“7)/V (e/“T) = m jw, we

can push all of the error into a frequency warping:

A 2t w, T’
wWg = — tan
T P

e Frequency-warping is the only error over the unit
circle when using the bilinear transform

e What started out as different gain errors on the left
and right became the correct gains at warped
frequency locations

e Frequency-warping implications should also be
considered in the time domain

21 22



Filter Design Approach

We've been talking about the white-box approach in
which every first-order element (mass, spring, ...) is
explicitly modeled by a first-order finite-difference
scheme. This is especially needed for elements that are
time varying or pushed into nonlinear regimes of
operation.

When a system is linear and time-invariant (LTI), there is
no need for such fine-grained modeling, and we can take

a a black-box approach, in which we need only model the
frequency response from the input(s) to output(s) of the

system using a digital filter.

23

Filter Design Approach to Ideal Integrators
and Differentiators

Consider the following simple cases:
e Integrator: H(s) =1/s
(e.g., force-driven mass with a velocity output)
e Differentiator: H(s) = s

(e.g., force-driven spring with a velocity output)

The digital filter design formulation typically minimizes
frequency-response error with respect to the filter
coefficients

24



Ideal Frequency Responses

e Ideal Digital Integrator
’ 1
H(eMT) = — —7/T,7/T
() = =, we|-n/T,n/T]
e /deal Digital Differentiator:
H(T) = jw, wé€[-n/T,7/T)
e Exact match is not possible in finite order

e Minimize H H(eT) — H(e™T) H where H is the
digital filter frequency response and || £ || denotes
some norm of E

e This is a digital filter design formulation

25

Ideal Differentiator Frequency Response

e Discontinuity at z = —1 = no exact solution
(polynomial approximation over the unit circle)

e Need oversampling and a don't-care band at high
frequencies (e.g., 20 kHz to 22.05 kHz)

e The frequency response can be arbitrary between the
upper limit of human hearing (20kHz) and f/2

e A small increment in oversampling factor yields a
large decrease in required filter order for a given spec

26



Explicit and Implicit Finite Difference Schemes

Explicit:
Ynt1 = Tn + f(Yn)
Implicit:
Yn+1 = Ty + f(:%z—l—l)

e A finite difference scheme is said to be explicit when
it can be computed forward in time using quantities
from previous time steps

e We will associate explicit finite difference schemes
with causal digital filters

e In implicit finite-difference schemes, the output of the
time-update (y,,+1 above) depends on itself, so a
causal recursive computation is not specified

e Implicit schemes are generally solved using

— iterative methods (such as Newton's method) in
nonlinear cases, and

— matrix-inverse methods for linear problems

e Implicit schemes are typically used offline
(not in real time)

27

Semi-Implicit Finite Difference Schemes

e Implicit schemes can often be converted to explicit
schemes (e.g., for real-time usage) by limiting the
number of iterations used to solve the implicit scheme

e These are called semi-implicit finite-difference
schemes

e |terative convergence is generally improved by working
at a very high sampling rate, and by initializing each
iteration to the solution for the previous sample

e See the 2009 CCRMA/EE thesis by David Yeh! for
semi-implicit schemes for real-time computational
modeling of nonlinear analog guitar effects (such as
overdrive distortion)

e Convex optimization methods can be used to develop
powerful new semi-implicit finite-difference schemes:
http://www.stanford.edu/ " boyd/cvxbook/

'http://ccrma.stanford.edu/ dtyeh
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ODE Laplace Transform Analysis

Recall the mass m sliding on friction p:

ODE:
£(t) = milt) + polt)
= ma(t) + pa(t)

Take the Laplace Transform of both sides and apply the
differentiation theorem (three times):

F(s) = m [$°X(s) — sz(0) — 2(0)] + p [s X (s) — 2(0)]

= ms?X(s) + ps X(s)
assuming zero initial conditions x(0) = (0) = 0.

Force-to-Velocity Transfer Function
(often called the “admittance” or “mobility”):

A Vi(s)  sX(s) 1

H(s)

F(s) F(s) ms + [

29

Bilinear Transform

The bilinear transform is a one-to-one mapping from the
s plane to the z plane:

1 -2zt 2
S:CTzl, c >0, c= (typically)
1+ s/c
= 2 =
1—s/c

Starting with a continuous-time transfer function H,(s),
we obtain the discrete-time transfer function

Hy(z) 2 H( 1_2_1>

c
14271

where “d" denotes “digital,” and “a" denotes “analog.”
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Properties of the Bilinear Transform

The bilinear transform maps an s-plane transfer function
H,(s) to a z-plane transfer function:

Hyz) 2 H, <c1_z_1>

14271

We can observe the following properties of the bilinear
transform:

e Analog dc (s = 0) maps to digital dc (z = 1)

e Infinite analog frequency (s = o0) maps to the
maximum digital frequency (z = —1)

e The entire jw axis in the s plane (where s 2 o + jw)
is mapped exactly once around the unit circle in the z
plane (rather than summing around it infinitely many
times, or “aliasing” as it does in ordinary sampling)

e Stability is preserved (when c is real and positive)
e Order of the transfer function is preserved

e Choose ¢ to map any particular finite frequency (such
as a resonance frequency) from the jw, axis in the s
plane to a particular desired location on the unit circle
e/“d in the z plane. Other frequencies are “warped”.

31

Bilinear Transform of Force-Driven Mass

We have, from f=mv < F(s)=msV(s),
1
V(s)=—F
(5) = —F(s)
Setting s = (2/T)(1 — z71)/(1 + 271) according to the
bilinear transform yields

T 1+271
Va(z) = %1_—2711@1(2)

where we defined
21—2z71
F = F (=
a(2) (Tl + 2'1)

21— 271
Vilz) = V <T1 +z‘1)

The resulting finite-difference scheme is then

wuln) = valn = 1) = 5 [falm) + foln ~ 1)

Ie.,

T
vg(n) = vg(n — 1) + D Lfa(n) + fa(n —1)]
We see that this is the same as the backward Euler
scheme plus a new term (7'/2m) fq(n — 1).
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Hybrid Euler-Bilinear Mapping

We can easily interpolate between Backward Euler and
Bilinear Transform:

l4+a 1—271

%
° T 14+az!

e o = () gives Backward Euler (high-frequency modes
artificially damped)

e o = 1 gives Bilinear Transform (high-frequency
modes artificially squeezed in frequency)

e Intermediate « allows optimization of another
consideration, such as decay time

e Low-frequency response approximately invariant,
dc maps to dc in every case

Example: Leaky Integrator

1 1
H,(s) = — Hy(z) =
)= ®) = T
 l4oaz! C1-aff B T
_gl_p2717 b= 1+1€+Ta ’ g_1+Oé+ET
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Accuracy of Trapezoidal Rule

For the Trapezoid Rule (bilinear transform),
dv
w=m—| +O(T"
fo=map) +0T7)

so it is second-order accurate in T’

We will come back to this below
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Backward Difference Conformal Map

We saw that the backwards difference substitution can be
seen as a conformal map taking the s plane to the z
plane:

11—zt

%
> T

Look at the image of the jw axis under this mapping:
jo

unit ——
circle

s plane z plane  image of
jo axis

The continuous-time frequency axis, s = jw, is not
mapped to the discrete-time frequency axis (unit circle):

e dc (s = 0) mapped to dc (z = 1)
e infinite frequency mapped to (z = 0)

This means artificial damping will be introduced for
high-frequency system resonances
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Laplace Analysis of Trapezoidal Rule

The z transform of the trapezoid rule yields
2m1 — 271
F(z)=—
(2) = V()

Since F(s) = msV(s), the s to z mapping has become

. 21—zt
T1+ 271

which is of course the standard bilinear transform:

S

® 5 = jw axis maps to the |z| = 1 unit circle where it
belongs

e dc maps to dc
e Infinite frequency maps to half the sampling rate

e Frequency axis is warped, especially at high
frequencies

e Stability preserved precisely
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Trapezoidal Rule Frequency Mapping

Let's look at the s to z mapping,
21— 271
§=—
T14 21
on the unit circle, where s = jw, and z = eJwdT .

21 —e vl 2

wy T’ wyl’
= tan | —
2 2

e Near dc (wg = 0), we have

JWa

or

2
Wy = Ttan(wdT/Q) = wy + O(T?)

where, since tan() is odd, there are no even-order
terms in its series expansion

In general, the trapezoid rule is a second-order accurate
approximation to a derivative, in the limit of small T’
(i.e., near dc). Here, it is third-order accurate along the
unit circle at dc.
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Summary of Backward Euler vs. Trapezoidal Rule

f(t) = maf(t) = mo(t) = p(t)

= l11m ~
T—0 T T

e Backward Euler (BE)

fn - %(pn - pn—l)

is O(T) (first-order accurate in T')

e Bilinear Transform, or Trapezoid Rule (TR)

2

fn = f (pn _pn—l) - fn—la

is O(T*) (second-order accurate in T

e A continuum of transforms
Cl+a 1—zt
T l+az'!
exists between BE and TR and can be optimized for
the application at hand (see Kurt Werner thesis and
Germain and Werner DAFx-15 paper for
details—Germain thesis coming soon)
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Why Don’t We Always Use the Bilinear Physical Model Formulations

Transform?
Reminder of the various kinds of physical model
e Backward Euler (BE) is still sometimes needed: representations we are considering:
— Damps out unwanted high-frequency oscillations e Ordinary Differential Equations (ODE)

(warped) e Partial Differential Equations (PDE)
— Avoids oscillations at half the sampling rate from a

real exponential e Difference Equations (DE)

* TR warps high-frequency poles toward half the e Finite Difference Schemes (FDS)
sampling rate:
s=g-(1-2"1)/(1+27")
toward z = —1 <> (—1)"

« BE warps high-frequency poles toward z = 0 so
it never introduces alternating-sign oscillations:

e (Physical) State Space Models
e Transfer Functions (between physical signals)
e Modal Representations (Parallel Second-Order Filters)

e Equivalent Circuits

s=g-(1—21 e Impedance Networks
« Alternating-sign oscillations due to BLT can be o Wave Digital Filters (WDF)
problematic in nonlinear circuits such as those e Digital Waveguide (DW) Networks
containing diodes (see Kurt Werner thesis for a
real-world example) We are mainly concerned with real-time computational

physical models
e Recall also that Forward Euler (FE) can break a

delay-free loop, and pairs well with BE in series
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State-Space Models

The state space formulation replaces an Nth-order ODE
by a vector first-order ODE.

Review of discrete-time case:
z(n+1) = Az(n)+Bu(n)
y(n) = Cz(n) +Du(n)

where

e 2(n) € RY = state vector at time n
n)

(

e y(n) = ¢ x 1 output vector

= p x 1 vector of inputs

I

e A = N X N state transition matrix
e B = N X p input coefficient matrix
e C = g x N output coefficient matrix

e D = ¢ x p direct path coefficient matrix
The state-space representation is especially powerful for

e multi-input, multi-output (MIMO) linear systems

e time-varying linear systems
(every matrix can have a time subscript n)

41

Continuous-Time State Space Models:

In continuous time, we obtain a first-order vector ODE in
which a vector of state time-derivatives is driven by linear
combinations of state variables:

a(t) = Ax(t) +Bu(t)
y(t) = Cz(t) + Du(t)

State-Space Advantages:

e State-space models are used extensively in advanced
modeling applications

e Extensive support in Matlab, with many numerically
excellent associated tools and techniques (such as the
singular value decomposition, to name one)

e Analytically powerful for theory work

e Example: Solution of &(t) = A z(t) is
x(t) = e £(0), where the matrix exponential is
defined as

1 1
eAS T4 AL A =
2 3!

e We won't do much with state-space modeling in this
class, but you should know it exists and that it should
be considered for larger, more complex systems than
we will be dealing with

A3t3_|_...
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Digitizing State Space Models (Simplistically) where > w. 2 4 »

More sophisticated methods will digitize in a manner that

Starting with a continuous-time state-space model
conserves energy and/or momentum

z(t) = Az(t) +Bu(t)
y(t) = Cux(t) + Duft

) Recommended Related Courses at Stanford
«  sX(s)—z(0) = AX(s)+BU(s)
(s

Y(s) = CX(s) + DU(s) o Math 226
we can, e.g., apply Backward Euler, Trapezoidal Rule o AA 214 A/B/C
(Bilinear Transform), or anything in between:
— e ME 300 A/B/C
—z
S= 97 OF [0, 1] e ME 335 A/B/C

to get, letting g = (1 + «) /T and defining z,, = z(nT),
T

Ly — Ly — A Ly, + ax, + B U, + au, 4
T 1+« 1+«

Y. =Cz,+Duy,

for zero initial conditions x O) 0

T
zn—ﬁ—l: 1_'_& n
T
n BT Z+ o w
1+a 1+«
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