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Two Approaches to Physical Modeling

1. “White Box” Modeling:

(a) Find the describing differential equations from
basic physical principles

(b) Digitize the differential equations to obtain
difference equations implemented in software

2. “Black Box” Modeling:

(a) Measure the system response to a representative
set of input signals

(b) Fit a computational model to the measured
input-output set

(c) In the Linear, Time-Invariant (LTI) case, a
Multi-Input, Multi-Output (MIMO) digital filter
will suffice

This class blends white- and black-box approaches:

1. LTI sections become fast, accurate digital filters

2. Nonlinear or rapidly time-varying subsystems normally
get a white-box approach (reeds, hammers, bows, . . .)
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Ordinary Differential Equations

Ordinary Differential Equations (ODEs) typically result
from Newton’s laws of motion:

f (t) = ma(t) (Force = Mass times Acceleration)

Acceleration a(t) relates to velocity v(t) and position
x(t) by differentiation with respect to time t:

a(t)
∆
= v̇(t)

∆
=

d ẋ(t)

dt
∆
= ẍ(t)

∆
=

d2x(t)

dt2

Physical Diagram:

f(t)

x = 0

a(t), v(t), x(t)

m

Force f (t) driving mass m along frictionless surface
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Equivalent Circuit for a Force-Driven Mass

m

+
f (t)

+

v(t)

• Mass m is an inductor L = m Henrys

• Driving force f (t) is a voltage source

• Mass velocity v(t) is the loop current

The ODE is obtained from the equivalent circuit by
summing all “voltages” around the current loop to zero
to obtain

−f (t) +mv̇ = 0

The minus sign for f (t) occurs because the current arrow
entered the minus side of the “voltage source”
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Reference Directions in Equivalent Circuits

m

+
f (t)

+

v(t)

−f (t) +mv̇ = 0

• “Reference directions” (±) on the voltage source and
circuit elements may be chosen arbitrarily—just keep
track and be consistent

• When f (t) is positive, “current” is pushed from its +
to its − terminal, i.e., v(t) will be positive if the rest
of the circuit is just a wire or a resistor

• The “force drop” across the mass m is positive when
v(t) increases in the direction going from its + to −
terminal. This can be interpreted as the inertial
reaction force of the mass that opposed the external
applied force (Newton’s first law of motion)
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ODE for a Mass Sliding with Friction

x = 0

m
f(t)

µ v(t)

Force f (t) driving mass m along surface with friction
force µ v(t):

f (t) = mẍ(t) + µ v(t)

= mẍ(t) + µ ẋ(t)

• Note that the friction force is positive to the left in
this figure, i.e., it is a reaction force

• The inertial reaction force of the mass points to the
left as well (not shown, but equal to −f (t))
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Force-Driven Mass with Friction
Diagram and Equivalent Circuit

f(t) m

µ

Force driving an ideal mass and dashpot

-

+

-
f(t)

+
+

-
m

µ

v(t)

fµ(t)

fm(t)

Equivalent Circuit

0 = −f (t) + fm + fµ

0 = −f (t) +m v̇(t) + µ v(t)
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Mass-Spring ODE

An ideal spring described by Hooke’s law

f (t) = k x(t) = k

∫ t

0

v(τ ) dτ ←→
V (s)

s

where k denotes the spring constant, x(t) denotes the
compressive spring displacement from rest at time t, and
f (t) is the force required for displacement x(t)

If the force on a mass is due to a spring then, as
discussed later, we may write the ODE as

k x(t) +mẍ(t) = 0

(Spring Force + Mass Inertial Force = 0)

Physical diagram:

m

x = 0

ẋ(t)→

x(t)→

k
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Mass-Spring-Wall System

m

x = 0 x(t)→

fext(t)

fext(t)− fm(t)− fk(t) = 0

v(t)→

fm(t)

k

fk(t)

• Driving force fext(t) is to the right on the mass

• Driving force + mass inertial force + spring force = 0

• Mass velocity = spring velocity

• This is a series combination of the spring and mass

If two physical elements are connected so that they share
a common velocity, then they are said to be formally
connected in series
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Equivalent Circuit for Mass-Spring-Wall

The “series” nature of the connection becomes more
clear when the equivalent circuit is considered:

-

-

+

fext(t)
-

+

vm(t) = vk(t)

+↔ voltage source Spring k ↔ Capacitance C = 1
k

(impedance Rk(s) =
k
s)

Mass m ↔ Inductance L = m
(impedance Rm(s) = ms)

fm(t)

fk(t)

• The driving force is applied to the mass such that a
positive force results in a positive mass displacement
and positive spring displacement (compression)

• The common mass and spring velocity appear as a
single current running through the inductor and
capacitor that model the mass and spring, respectively
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Mass-Spring-Dashpot ODE

If the mass is sliding with friction, then a simple ODE
model is given by

k x(t) + µ ẋ(t) +mẍ(t) = 0

(Spring + Friction + Inertial Forces = 0)

Physical diagram:

m

x = 0

k

µ

We will use such ODEs to model mass, spring, and
dashpot elements, and their equivalent circuits
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Difference Equations
(Finite Difference Schemes)

• There are many methods for converting ODEs to
difference equations

• For white-box modeling, we’ll use a very simple,
order-preserving methods which replaces each
derivative or integral with a first-order finite
difference:

ẋ(t)
∆
=

d

dt
x(t)

∆
= lim

δ→0

x(t)− x(t− δ)

δ

≈
x(nT )− x[(n− 1)T ]

T
∆
= ˆ̇x(t)

for sufficiently small T (the sampling interval)

• This is formally known as the Backward Euler (BE),
or backward difference method for differentiation
approximation

• In addition to BE, we’ll look at Forward Euler (FE),
BiLinear Transform (BLT), and a few others

• For a more advanced treatment of finite difference
schemes, see Numerical Sound Synthesis by
Stefan Bilbao (2009, Wiley)
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Backward Euler Finite-Difference Equation for a
Force-Driven Mass

• Newton’s f = ma can be written in terms of force f
and velocity v or momentum p = mv as

f (t) = m v̇(t) = ṗ(t)

• The backward-difference substitution gives

f (nT ) ≈ m
v(nT )− v[(n− 1)T ]

T
∆
= m ˆ̇v(nT )

for n = 0, 1, 2, . . . . Or, in a lighter notation,

fn ≈ m
vn − vn−1

T
∆
= m ˆ̇vn, n = 0, 1, 2, . . .

with v−1
∆
= 0

• We often use a “hat” to denote approximation: v̂ ≈ v

• In this case, ˆ̇vn is more accurately written as ˆ̇vn−1/2

• Solving for vn yields a difference equation
(finite difference scheme):

v̂n = v̂n−1 +
T

m
fn, n = 0, 1, 2, . . .

with v̂−1
∆
= 0
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Accuracy of Backward Euler

Suppose we take the backward-difference approximation
fn = (m/T )(vn − vn−1), and expand vn−1 in Taylor
series about vn. This yields:

fn =
m

T

(

vn −

(

vn − T
dv

dt

∣

∣

∣

∣

nT

+O(T 2)

))

= m
dv

dt

∣

∣

∣

∣

nT

+O(T )

• We say that the backward difference approximation
has an error of order T , written O(T )

• The order of the error tells us how fast the error
approaches zero as the sampling rate fs = 1/T
approaches infinity

• Backward Euler maps infinite frequency s =∞ to
z = 0 (maximally damped), while trapezoidal rule
(bilinear transform) maps s =∞ to z = −1 (no
damping introduced)
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Summary of Backward Euler

vn = vn−1 + T ˆ̇vn

⇐⇒ ˆ̇vn =
vn − vn−1

T

l = l

V (z) = z−1V (z) + T ˆ̇V (z)

⇒ ˆ̇V (z) =
1− z−1

T
V (z)

Expressing BE as a conformal map from s to z:

s ←
1− z−1

T

The ideal differentiator H(s) = s, which is a first-order
continuous-time LTI filter, is mapped to a first-order
discrete-time LTI filter H(z) = (1− z−1)/T .
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Delay-Free Loops

Backward-Euler numerical integrator:

vn = vn−1 + T ˆ̇vn

Corresponding BE digital mass model:

v̂n = v̂n−1 +
T

m
fn

where v̂n is the nth sample of the estimated velocity, fn
is the driving force at sample n, m is the mass, and T is
the sampling interval

• Note that a delay-free loop appears if fn depends on
vn (e.g., due to friction):

v̂n = v̂n−1 +
T

m
fn(v̂n)

• In such a case, the difference equation is not
computable in this form

• Non-computable finite-differences schemes such as
this are said to be implicit

• We can address this by using a forward-difference
(“Forward Euler”)in place of a backward difference
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Forward-Euler (FE)

The backward difference was based on the usual
left-sided limit in the definition of the time derivative:

ẋ(t) = lim
δ→0

x(t)− x(t− δ)

δ
≈

xn − xn−1
T

The forward difference comes from the right-sided limit:

ẋ(t) = lim
δ→0

x(t + δ)− x(t)

δ
≈

xn+1 − xn
T

• As T → 0, the forward and backward difference
approximations approach the same limit, because x(t)
is assumed continuous and differentiable at t

• The forward difference gives an explicit finite
difference scheme for the force-driven-mass problem
above, even if the driving force fn depends on current
velocity vn:

v̂n+1 = v̂n +
T

m
fn, n = 0, 1, 2, . . .

with v0
∆
= 0

• We obtain the same finite-difference scheme by
introducing an ad hoc delay in the driving force of the
Backward Euler scheme to get
v̂n = v̂n−1 + (T/m)fn−1
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Centered Finite Difference

Backward Euler [s← (1− z−1)/T )] has a 1/2 sample
delay at all frequencies, while Forward Euler
[s← (z − 1)/T )] has a 1/2 sample advance. We can
eliminate this time-skew using a
centered finite difference:

ˆ̇v(nT ) =
vn+1 − vn−1

2T

⇒ fn ≈
m

2T
(vn+1 − vn−1)

⇒ v̂n+1 = v̂n−1 +
2T

m
fn

• No time delay or advance

• Compare the Leapfrog integrator

• s to z mapping is

s =
z − z−1

2T
→

ejωT − e−jωT

2T
= j

sin(ωT )

T
≈ jω

at low frequencies, but note how it reaches a
maximum at ωT = π/2 and comes back down to 0 at
ωT = π

18



Trapezoidal Rule for Numerical Integration

The velocity v(t) can be written as

v(t) = v(0) +

(
∫ t

0

v̇(τ )dτ

)

In particular,

v(nT ) = v(0) +

∫ (n−1)T

0

v̇(τ )dτ +

∫ nT

(n−1)T
v̇(τ )dτ

= v[(n− 1)T ] +

∫ nT

(n−1)T
v̇(τ )dτ

≈ v[(n− 1)T ] + T
v̇[(n− 1)T ] + v̇(nT )

2

• This approximation replaces a one-sample integral by
the area under the trapezoid having vertices
(n− 1, 0), (n− 1, v̇n−1), (n, 0), (n, v̇n)

• In other words, v̇(t) is approximated by a straight line
between time n− 1 and n

• This is a first-order approximation of v̇(t) in contrast
to the zero-order approximation used by forward and
backward Euler schemes
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• We will see that the commonly used bilinear
transform is equivalent

• Model is exact if driving force is piecewise linear,
having a constant slope over each sampling interval

• (Backward Euler is similarly exact for a
piecewise-constant driving force)

Bilinear Transform as Compensated BE/FE

In Newton’s law f = mv̇, look at the Backward Euler
(BE) approximation of the time-derivative:

f (t) = m v̇ ≈ m
v(t)− v(t− T )

T

We see there is a 1/2 sample delay in the first-order
difference on the right. This misaligns the force f (t) and
subsequent velocity by half a sample. A very simple delay
compensation is to use a two-point average on the left:

f (n) + f (n− 1)

2
≈ m

v(n)− v(n− 1)

T

The extra attenuation at high frequencies due to the
two-point average actually helps. Taking the z transform:

1 + z−1

2
F (z) ≈ m

1− z−1

T
V (z)
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or

F (z) ≈ m

(

2

T

1− z−1

1 + z−1

)

V (z)

which is the bilinear transform of F (s) = msV (s):

s 7→
2

T

1− z−1

1 + z−1

21

Frequency Warping is the Only Error

We have

F (z) ≈ m

(

2

T

1− z−1

1 + z−1

)

V (z)

using the bilinear transform (trapezoidal integration in
the time domain)

Let’s look along the unit circle in the z plane:

F (ejωT )

V (ejωT )
≈ m

(

2

T

1− e−jωT

1 + e−jωT

)

= mj

(

2

T
tan

(

ωT

2

))

Since the exact formula is F (ejωT )/V (ejωT ) = mjω, we
can push all of the error into a frequency warping :

ωd
∆
=

2

T
tan

(

ωaT

2

)

• Frequency-warping is the only error over the unit
circle when using the bilinear transform

• What started out as different gain errors on the left
and right became the correct gains at warped
frequency locations

• Frequency-warping implications should also be
considered in the time domain
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Filter Design Approach

We’ve been talking about the white-box approach in
which every first-order element (mass, spring, . . . ) is
explicitly modeled by a first-order finite-difference
scheme. This is especially needed for elements that are
time varying or pushed into nonlinear regimes of
operation.

When a system is linear and time-invariant (LTI), there is
no need for such fine-grained modeling, and we can take
a a black-box approach, in which we need only model the
frequency response from the input(s) to output(s) of the
system using a digital filter.
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Filter Design Approach to Ideal Integrators
and Differentiators

Consider the following simple cases:

• Integrator: H(s) = 1/s
(e.g., force-driven mass with a velocity output)

• Differentiator: H(s) = s
(e.g., force-driven spring with a velocity output)

The digital filter design formulation typically minimizes
frequency-response error with respect to the filter
coefficients
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Ideal Frequency Responses

• Ideal Digital Integrator

H(ejωT ) =
1

jω
, ω ∈ [−π/T, π/T ]

• Ideal Digital Differentiator:

H(ejωT ) = jω, ω ∈ [−π/T, π/T ]

• Exact match is not possible in finite order

• Minimize
∥

∥

∥
H(ejωT )− Ĥ(ejωT )

∥

∥

∥
where Ĥ is the

digital filter frequency response and ‖E ‖ denotes
some norm of E

• This is a digital filter design formulation
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Ideal Differentiator Frequency Response

Re

Im

Gain

Re

Im

Gain

• Discontinuity at z = −1 ⇒ no exact solution
(polynomial approximation over the unit circle)

• Need oversampling and a don’t-care band at high
frequencies (e.g., 20 kHz to 22.05 kHz)

• The frequency response can be arbitrary between the
upper limit of human hearing (20kHz) and fs/2

• A small increment in oversampling factor yields a
large decrease in required filter order for a given spec
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Explicit and Implicit Finite Difference Schemes

Explicit:
yn+1 = xn + f (yn)

Implicit:
yn+1 = xn + f (yn+1)

• A finite difference scheme is said to be explicit when
it can be computed forward in time using quantities
from previous time steps

• We will associate explicit finite difference schemes
with causal digital filters

• In implicit finite-difference schemes, the output of the
time-update (yn+1 above) depends on itself, so a
causal recursive computation is not specified

• Implicit schemes are generally solved using

– iterative methods (such as Newton’s method) in
nonlinear cases, and

– matrix-inverse methods for linear problems

• Implicit schemes are typically used offline
(not in real time)
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Semi-Implicit Finite Difference Schemes

• Implicit schemes can often be converted to explicit
schemes (e.g., for real-time usage) by limiting the
number of iterations used to solve the implicit scheme

• These are called semi-implicit finite-difference
schemes

• Iterative convergence is generally improved by working
at a very high sampling rate, and by initializing each
iteration to the solution for the previous sample

• See the 2009 CCRMA/EE thesis by David Yeh1 for
semi-implicit schemes for real-time computational
modeling of nonlinear analog guitar effects (such as
overdrive distortion)

• Convex optimization methods can be used to develop
powerful new semi-implicit finite-difference schemes:
http://www.stanford.edu/~boyd/cvxbook/

1http://ccrma.stanford.edu/~dtyeh
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ODE Laplace Transform Analysis

Recall the mass m sliding on friction µ:

x = 0

m
f(t)

µ v(t)

ODE:

f (t) = mẍ(t) + µ v(t)

= mẍ(t) + µ ẋ(t)

Take the Laplace Transform of both sides and apply the
differentiation theorem (three times):

F (s) = m
[

s2X(s)− s x(0)− ẋ(0)
]

+ µ [sX(s)− x(0)]

= ms2X(s) + µ sX(s)

assuming zero initial conditions x(0) = ẋ(0) = 0.

Force-to-Velocity Transfer Function
(often called the “admittance” or “mobility”):

H(s)
∆
=

V (s)

F (s)
=

sX(s)

F (s)
=

1

ms + µ
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Bilinear Transform

The bilinear transform is a one-to-one mapping from the
s plane to the z plane:

s = c
1− z−1

1 + z−1
, c > 0, c =

2

T
(typically)

⇒ z =
1 + s/c

1− s/c

Starting with a continuous-time transfer function Ha(s),
we obtain the discrete-time transfer function

Hd(z)
∆
= Ha

(

c
1− z−1

1 + z−1

)

where “d” denotes “digital,” and “a” denotes “analog.”

30



Properties of the Bilinear Transform

The bilinear transform maps an s-plane transfer function
Ha(s) to a z-plane transfer function:

Hd(z)
∆
= Ha

(

c
1− z−1

1 + z−1

)

We can observe the following properties of the bilinear
transform:

• Analog dc (s = 0) maps to digital dc (z = 1)

• Infinite analog frequency (s =∞) maps to the
maximum digital frequency (z = −1)

• The entire jω axis in the s plane (where s ∆
= σ + jω)

is mapped exactly once around the unit circle in the z
plane (rather than summing around it infinitely many
times, or “aliasing” as it does in ordinary sampling)

• Stability is preserved (when c is real and positive)

• Order of the transfer function is preserved

• Choose c to map any particular finite frequency (such
as a resonance frequency) from the jωa axis in the s
plane to a particular desired location on the unit circle
ejωd in the z plane. Other frequencies are “warped”.
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Bilinear Transform of Force-Driven Mass

We have, from f = mv̇ ↔ F (s) = msV (s),

V (s) =
1

ms
F (s)

Setting s = (2/T )(1− z−1)/(1 + z−1) according to the
bilinear transform yields

Vd(z) =
T

2m

1 + z−1

1− z−1
Fd(z)

where we defined

Fd(z) = F

(

2

T

1− z−1

1 + z−1

)

Vd(z) = V

(

2

T

1− z−1

1 + z−1

)

The resulting finite-difference scheme is then

vd(n)− vd(n− 1) =
T

2m
[fd(n) + fd(n− 1)]

i.e.,

vd(n) = vd(n− 1) +
T

2m
[fd(n) + fd(n− 1)]

We see that this is the same as the backward Euler
scheme plus a new term (T/2m)fd(n− 1).
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Hybrid Euler-Bilinear Mapping

We can easily interpolate between Backward Euler and
Bilinear Transform:

s→
1 + α

T

1− z−1

1 + α z−1

• α = 0 gives Backward Euler (high-frequency modes
artificially damped)

• α = 1 gives Bilinear Transform (high-frequency
modes artificially squeezed in frequency)

• Intermediate α allows optimization of another
consideration, such as decay time

• Low-frequency response approximately invariant,
dc maps to dc in every case

Example: Leaky Integrator

Ha(s) =
1

s + ǫ
−→ Hd(z) =

1
1+α
T

1−z−1

1+α z−1
+ ǫ

= g
1 + αz−1

1− pz−1
, p =

1− α ǫT
1+α

1 + ǫT
1+α

, g =
T

1 + α + ǫT
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Accuracy of Trapezoidal Rule

For the Trapezoid Rule (bilinear transform),

fn = m
dv

dt

∣

∣

∣

∣

nT

+O(T 2)

so it is second-order accurate in T

We will come back to this below
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Backward Difference Conformal Map

We saw that the backwards difference substitution can be
seen as a conformal map taking the s plane to the z
plane:

s→
1− z−1

T

Look at the image of the jω axis under this mapping:

The continuous-time frequency axis, s = jω, is not
mapped to the discrete-time frequency axis (unit circle):

• dc (s = 0) mapped to dc (z = 1)

• infinite frequency mapped to (z = 0)

This means artificial damping will be introduced for
high-frequency system resonances
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Laplace Analysis of Trapezoidal Rule

The z transform of the trapezoid rule yields

F (z) =
2m

T

1− z−1

1 + z−1
V (z)

Since F (s) = msV (s), the s to z mapping has become

s→
2

T

1− z−1

1 + z−1

which is of course the standard bilinear transform:

• s = jω axis maps to the |z| = 1 unit circle where it
belongs

• dc maps to dc

• Infinite frequency maps to half the sampling rate

• Frequency axis is warped, especially at high
frequencies

• Stability preserved precisely
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Trapezoidal Rule Frequency Mapping

Let’s look at the s to z mapping,

s =
2

T

1− z−1

1 + z−1

on the unit circle, where s = jωa and z = ejωdT :

jωa =
2

T

1− e−jωdT

1 + e−jωdT
= j

2

T
tan(ωdT/2)

or
ωaT

2
= tan

(

ωdT

2

)

• Near dc (ωd = 0), we have

ωa =
2

T
tan(ωdT/2) = ωd +O(T

3)

where, since tan(θ) is odd, there are no even-order
terms in its series expansion

In general, the trapezoid rule is a second-order accurate
approximation to a derivative, in the limit of small T
(i.e., near dc). Here, it is third-order accurate along the
unit circle at dc.
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Summary of Backward Euler vs. Trapezoidal Rule

For

f (t) = ma(t) = m v̇(t) = ṗ(t)

= lim
T→0

p(t)− p(t− T )

T
≈

p(t)− p(t− T )

T

• Backward Euler (BE)

fn =
1

T
(pn − pn−1)

is O(T ) (first-order accurate in T )

• Bilinear Transform, or Trapezoid Rule (TR)

fn =
2

T
(pn − pn−1)− fn−1,

is O(T 2) (second-order accurate in T )

• A continuum of transforms

s =
1 + α

T

1− z−1

1 + αz−1

exists between BE and TR and can be optimized for
the application at hand (see Kurt Werner thesis and
Germain and Werner DAFx-15 paper for
details—Germain thesis coming soon)
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Why Don’t We Always Use the Bilinear
Transform?

• Backward Euler (BE) is still sometimes needed:

– Damps out unwanted high-frequency oscillations
(warped)

– Avoids oscillations at half the sampling rate from a
real exponential

∗ TR warps high-frequency poles toward half the
sampling rate:

s = g′ · (1− z−1)/(1 + z−1)

toward z = −1↔ (−1)n

∗ BE warps high-frequency poles toward z = 0 so
it never introduces alternating-sign oscillations:

s = g · (1− z−1)

∗ Alternating-sign oscillations due to BLT can be
problematic in nonlinear circuits such as those
containing diodes (see Kurt Werner thesis for a
real-world example)

• Recall also that Forward Euler (FE) can break a
delay-free loop, and pairs well with BE in series
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Physical Model Formulations

Reminder of the various kinds of physical model
representations we are considering:

• Ordinary Differential Equations (ODE)

• Partial Differential Equations (PDE)

• Difference Equations (DE)

• Finite Difference Schemes (FDS)

• (Physical) State Space Models

• Transfer Functions (between physical signals)

• Modal Representations (Parallel Second-Order Filters)

• Equivalent Circuits

• Impedance Networks

• Wave Digital Filters (WDF)

• Digital Waveguide (DW) Networks

We are mainly concerned with real-time computational
physical models
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State-Space Models

The state space formulation replaces an N th-order ODE
by a vector first-order ODE.

Review of discrete-time case:

x(n + 1) = A x(n) +B u(n)

y(n) = C x(n) +D u(n)

where

• x(n) ∈ R
N = state vector at time n

• u(n) = p× 1 vector of inputs

• y(n) = q × 1 output vector

• A = N ×N state transition matrix

• B = N × p input coefficient matrix

• C = q ×N output coefficient matrix

• D = q × p direct path coefficient matrix

The state-space representation is especially powerful for

• multi-input, multi-output (MIMO) linear systems

• time-varying linear systems
(every matrix can have a time subscript n)
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Continuous-Time State Space Models:

In continuous time, we obtain a first-order vector ODE in
which a vector of state time-derivatives is driven by linear
combinations of state variables:

ẋ(t) = A x(t) +B u(t)

y(t) = C x(t) +D u(t)

State-Space Advantages:

• State-space models are used extensively in advanced
modeling applications

• Extensive support in Matlab, with many numerically
excellent associated tools and techniques (such as the
singular value decomposition, to name one)

• Analytically powerful for theory work

• Example: Solution of ẋ(t) = A x(t) is
x(t) = eAt x(0), where the matrix exponential is
defined as

eAt ∆
= I +At +

1

2
A2t2 +

1

3!
A3t3 + · · ·

• We won’t do much with state-space modeling in this
class, but you should know it exists and that it should
be considered for larger, more complex systems than
we will be dealing with
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Digitizing State Space Models (Simplistically)

Starting with a continuous-time state-space model

ẋ(t) = A x(t) +B u(t)

y(t) = C x(t) +Du(t)

←→ sX(s)− x(0) = AX(s) +BU(s)

Y (s) = CX(s) +DU(s)

we can, e.g., apply Backward Euler, Trapezoidal Rule
(Bilinear Transform), or anything in between:

s = g
1− z−1

1 + αz−1
, α ∈ [0, 1]

to get, letting g = (1 + α)/T and defining xn = x(nT ),

xn − xn−1
T

= A

[

xn + αxn−1
1 + α

]

+B

[

un + αun−1
1 + α

]

y
n
= C xn +Dun

for zero initial conditions x(0) = 0 ⇒

xn+1 =

(

I −A
T

1 + α

)−1(

I +A
αT

1 + α

)

xn

+

(

I −A
T

1 + α

)−1

BT

(

z + α

1 + α

)

un
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where z un
∆
= un+1

More sophisticated methods will digitize in a manner that
conserves energy and/or momentum

Recommended Related Courses at Stanford

• Math 226

• AA 214 A/B/C

• ME 300 A/B/C

• ME 335 A/B/C
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