Next  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

From Lumped to Distributed Modeling

\epsfig{file=eps/SpringMassChain.eps,width=\textwidth }

As mass-spring density approaches infinity, we obtain an ideal string, governed by ``wave equation'' PDEs such as

$\displaystyle \zbox{ Ky''= \epsilon {\ddot y}}
$

where, for transverse displacement $ y(t,x)$ , we have

\begin{displaymath}
\begin{array}{rclrcl}
K& \mathrel{\stackrel{\mathrm{\Delta}}{=}}& \hbox{string tension} & \qquad y & \mathrel{\stackrel{\mathrm{\Delta}}{=}}& y(t,x) \nonumber \\ [10pt]
\epsilon & \mathrel{\stackrel{\mathrm{\Delta}}{=}}& \hbox{linear mass density} & {\dot y}& \mathrel{\stackrel{\mathrm{\Delta}}{=}}& \frac{\partial}{\partial t}y(t,x) \nonumber \\ [10pt]
y & \mathrel{\stackrel{\mathrm{\Delta}}{=}}& \hbox{transverse displacement} & y'& \mathrel{\stackrel{\mathrm{\Delta}}{=}}& \frac{\partial}{\partial x}y(t,x) \nonumber
\end{array}\end{displaymath}

The wave equation is once again Newton's $ f=ma$ ,
but now for each differential string element:

\begin{eqnarray*}
Ky''&=& \mbox{\emph{vertical force density} on the element}\\
\epsilon {\ddot y}&=& \mbox{\emph{vertical inertial reaction force density} from the element}\\
&=& \mbox{\emph{mass-density} times \emph{vertical acceleration}}
\end{eqnarray*}


Next  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download Delay.pdf
Download Delay_2up.pdf
Download Delay_4up.pdf

``Computational Acoustic Modeling with Digital Delay'', by Julius O. Smith III, (From Lecture Overheads, Music 420).
Copyright © 2014-03-24 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]