
MUS420 Lecture
Computational Acoustic Modeling with Digital Delay

Julius O. Smith III (jos@ccrma.stanford.edu)
Center for Computer Research in Music and Acoustics (CCRMA)

Department of Music, Stanford University
Stanford, California 94305

February 11, 2020

Outline

• Lumped and Distributed Modeling

• Delay lines

• Filtered Delay lines

• Digital Waveguides

• Echo simulation

• Comb filters

• Vector Comb Filters (Feedback Delay Networks)

• Tapped Delay Lines and FIR Filters

• Allpass filters

• Artificial Reverberation

1

From Lumped to Distributed Modeling

m
k k

f(t) . . .m
k

m
k

v(t)

As mass-spring1 density approaches infinity, we obtain an
ideal string, governed by “wave equation” PDEs such as

Y d′′ = ρ d̈

where, for longitudinal displacement d(t, x), we have

Y
∆
= Young’s Modulus d

∆
= d(t, x)

ρ
∆
= mass density ḋ

∆
= ∂

∂td(t, x)

d
∆
= longitudinal displacement d′

∆
= ∂

∂xd(t, x)

The wave equation is once again Newton’s f = ma,
but now for each differential string element:

Y d′′ = force density on the element

ρd̈ = inertial reaction force density

= mass-density times acceleration
1
Transverse waves demo: http://phet.colorado.edu/sims/wave-on-a-string/wave-on-a-string en.html

2

http://ccrma.stanford.edu/~jos
http://ccrma.stanford.edu/
http://www.stanford.edu/group/Music/
http://www.stanford.edu/
http://phet.colorado.edu/sims/wave-on-a-string/wave-on-a-string_en.html

Transverse Wave Equation: Ideal String

Position

y (t,x)

0 x

. . .

. . .
0

K

String Tension

ε = Mass/Length

Wave Equation
Ky′′ = ǫÿ

K
∆
= string tension y

∆
= y(t, x)

ǫ
∆
= linear mass density ẏ

∆
= ∂

∂ty(t, x)

y
∆
= string displacement y′

∆
= ∂

∂xy(t, x)

Newton’s second law

Force = Mass× Acceleration

Assumptions

• Lossless

• Linear

• Flexible (no “Stiffness”)

• Slope y′(t, x)≪ 1

3

Derivation of Transverse String Wave Equation

x x+ dx
θ2

K K

stringf

K sin(θ2)
K sin(θ1) θ1

Force diagram for length dx string element

Total upward force on length dx string element:

f (x + dx/2) = K sin(θ1) +K sin(θ2)

≈ K [tan(θ1) + tan(θ2)]

= K [−y′(x) + y′(x + dx)]

≈ K [−y′(x) + y′(x) + y′′(x)dx)]

= Ky′′(x)dx

Mass of length dx string segment: m = ǫ dx.

By Newton’s law, f = ma = mÿ, we have

Ky′′(t, x)dx = (ǫ dx)ÿ(t, x)

or
Ky′′(t, x) = ǫÿ(t, x)

4

Traveling-Wave Solution

One-dimensional lossless wave equation:

Ky′′ = ǫÿ

Plug in traveling wave to the right:

y(t, x) = yr(t− x/c)

⇒ y′(t, x) = −
1

c
ẏ(t, x)

y′′(t, x) =
1

c2
ÿ(t, x)

• Given c
∆
=
√

K/ǫ, the wave equation is satisfied for
any shape traveling to the right at speed c (but
remember slope ≪ 1)

• Similarly, any left-going traveling wave at speed c,
yl(t + x/c), satisfies the wave equation (show)

5

• General solution to lossless, 1D, second-order wave
equation:

y(t, x) = yr(t− x/c) + yl(t + x/c)

• yl(·) and yr(·) are arbitrary twice-differentiable
functions (slope ≪ 1)

• Important point: Function of two variables y(t, x)
is replaced by two functions of a single (time) variable
⇒ reduced computational complexity.

• Published by d’Alembert in 1747
(wave equation itself introduced in same paper)

6

Sampled Waves and Lumped Filters

We have that the wave equation Y d′′ = ǫd̈ is obeyed by
any pair of traveling waves

d(t, x) = dr

(

t−
x

c

)

+ dl

(

t +
x

c

)

• dl(·) and dr(·) are arbitrary twice-differentiable
displacement functions

• c =
√

K/ǫ for transverse waves, and c =
√

Y/ρ for
longitudinal waves, where Y is Young’s modulus =
“spring constant” for solids (stress/strain ∆

=

force-per-unit-area / relative displacement),
ρ is mass per unit volume (rods), and
ǫ is mass per unit length (ideal strings)

• We can sample these traveling-wave components to
obtain the super-efficient digital waveguide modeling
approach for strings and acoustic tubes (and more)

• Any acoustic “ray” or propagating wave can be
implemented digitally using a simple delay line
followed by linear filtering to implement loss and/or
dispersion:

y(n)x(n) z−M HM (z)

7

Delay lines

Delay lines are important building blocks for many audio
effects and synthesis algorithms, including

• Digital audio effects

– Phasing

– Flanging

– Chorus

– Leslie

– Reverb

• Physical modeling synthesis

– Acoustic propagation delay (echo, multipath)

– Vibrating strings (guitars, violins, . . .)

– Woodwind bores

– Horns

– Percussion (rods, membranes)

8

The M-Sample Delay Line

x(n) y(n)z−M

• y(n) = x(n−M), n = 0, 1, 2, . . .

• Must define x(−1), x(−2), . . . , x(−M) (usually zero)

9

Delay Line as a Digital Filter

x(n) y(n)z−M

Difference Equation

y(n) = x(n−M)

Transfer Function

H(z) = z−M

•M poles at z = 0

•M zeros at z =∞

Frequency Response

H(ejωT) = e−jMωT , ωT ∈ [−π, π)

• “Allpass” since
∣
∣H(ejωT)

∣
∣ = 1

• “Linear Phase” since ∠H(ejωT) = −MωT = αω

10

Delay Line in C

C Code:

static double D[M]; /* initialized to zero */

static long ptr=0; /* read-write offset */

double delayline(double x)

{

double y = D[ptr]; /* read operation */

D[ptr++] = x; /* write operation */

if (ptr >= M) { ptr -= M; } /* wrap ptr */

return y;

}

• Circular buffer in software

• Shared read/write pointer

• Length not easily modified in real time

• Internal state (“instance variables”)
= length M array + read pointer

11

Delay Line in Faust

import("stdfaust.lib");

maxDelay = 16;

currentDelay = 5;

process = de.delay(maxDelay, currentDelay);

Generated C++ Code (Optimized!):

class mydsp : public dsp {

...

float fVec0[6];

...

virtual void compute(int count,

FAUSTFLOAT** inputs,

FAUSTFLOAT** outputs)

{

FAUSTFLOAT* input0 = inputs[0];

FAUSTFLOAT* output0 = outputs[0];

for (int i = 0; (i < count); i = (i + 1)) {

fVec0[0] = float(input0[i]);

output0[i] = FAUSTFLOAT(fVec0[5]);

for (int j0 = 5; (j0 > 0); j0 = (j0 - 1)) {

fVec0[j0] = fVec0[(j0 - 1)];

}

}}};

12

Less Predictable Delay Line in Faust

import("stdfaust.lib");

maxDelay = 16;

process(x) = de.delay(maxDelay, x);

Generated C++ Code:

class mydsp : public dsp {

private:

int IOTA;

float fVec0[32];

...

virtual void compute(...

...

for (int i = 0; (i < count); i = (i + 1)) {

fVec0[(IOTA & 31)] = float(input1[i]);

output0[i] = FAUSTFLOAT(fVec0[((IOTA

- int(std::min<float>(16.0f,

std::max<float>(0.0f,

float(input0[i]))))) & 31)]);

IOTA = (IOTA + 1);

}

}

};

13

Ideal Traveling-Wave Simulation

x(n) y(n)z−M

Acoustic Plane Waves in Air

• x(n) = excess pressure at time nT , at some fixed
point px ∈ R

3 through which a plane wave passes

• y(n) = excess pressure at time nT , for a point py
which is McT meters “downstream” from px along
the direction of travel for the plane wave, where

– T denotes the time sampling interval in seconds

– c denotes the speed of sound in meters per second

– In one temporal sampling interval (T seconds),
sound travels one spatial sample (X = cT meters)

Transverse Waves on a String

• x(n) = displacement at time nT , for some point on
the string

• y(n) = transverse displacement at a point McT
meters away on the string

14

Lossy Traveling-Wave Simulator

y(n)x(n)
gM

z−M

• Propagation delay = M samples

• Assume (or observe) exponential decay in direction of
wave travel

• Distributed attenuation is lumped at one point along
the ray: gM < 1

• Input/output simulation is exact at the sampling
instants

• Only deviation from ideal is that simulation is
bandlimited

15

Traveling-Wave Simulation with
Frequency-Dependent Losses

In all acoustic systems of interest, propagation losses vary
with frequency.

y(n)x(n) z−M GM(z)

• Propagation delay = M samples + filter delay

• Attenuation =
∣
∣G(ejωT)

∣
∣M

• Filter is linear and time-invariant (LTI)

• Propagation delay and attenuation can now vary with
frequency

• For physical passivity, we require
∣
∣G(ejωT)

∣
∣ ≤ 1

for all ω.

16

Dispersive Traveling-Wave Simulation

In many acoustic systems, such as piano strings, wave
propagation is also dispersive

y(n)x(n) z−M AM (z)

• This is simulated using an allpass filter A(z) having
nonlinear phase

• Since dispersive wave propagation is lossless, the
dispersion filter is “allpass,” i.e.,

∣
∣A(ejωT)

∣
∣ ≡ 1, ∀ω

• Note that a delay line is also an allpass filter:
∣
∣ejωMT

∣
∣ ≡ 1, ∀ω

17

Recursive Allpass Filters

In general, (finite-order) allpass filters can be written as

H(z) = ejφz−K
Ã(z)

A(z)

where

A(z) = 1 + a1z
−1 + a2z

−2 + · · · + aNz
−N

Ã(z)
∆
= z−NA(z−1)

∆
= aN + aN−1z

−1 + · · · + a1z
−(N−1) + · · · + z−N

• The polynomial Ã(z) can be obtained by reversing the
order of the coefficients in A(z) and conjugating them

• The problem of dispersion filter design is typically
formulated as an allpass-filter design problem

18

Phase Delay and Group Delay

Phase Response:

Θ(ω)
∆
= ∠H(ejωT)

Phase Delay:

P (ω)
∆
= −

Θ(ω)

ω
(Phase Delay)

Group Delay:

D(ω)
∆
= −

d

dω
Θ(ω) (Group Delay)

• For a slowly modulated sinusoidal input signal
x(n) = A(nT) cos(ωnT + φ), the output signal is

y(n) ≈ G(ω)A[nT −D(ω)] · cos{ω[nT − P (ω)] + φ}

where G(ω)
∆
= |H(ejωT)| is the amplitude response.

• Unwrap phase response Θ(ω) to uniquely define it:

– Θ(0)
∆
= 0 or ±π for real filters

– Discontinuities in Θ(ω) cannot exceed ±π radians

– Phase jumps ±π radians are equivalent

– See Matlab function unwrap

19

Acoustic Point Source

x1

x2

r12

• Let x = (x, y, z) denote the Cartesian coordinates of
a point in 3D space

• Point source at x = x1 = (x1, y1, z1)

• Listening point at x = x2 = (x2, y2, z2)

• Propagation distance:

r12 = ‖x2 − x1 ‖ =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

Acoustic pressure peak amplitude (or rms level) at
x = x2 is given by

p(x2) =
p1
r12

where p1 is the peak amplitude (or rms level) at
r12 = ‖x2 − x1 ‖ = 1

Notice that pressure decreases as 1/r away from the
point source

20

Inverse Square Law for Acoustics

The intensity of a sound is proportional to the square of
its sound pressure p, where pressure is force per unit area

Therefore, the average intensity at distance r12 away
from a point source of average-intensity

I1 ∝
〈

|p1|
2
〉

is I(x2) =
I1
r212

This is a so-called inverse square law.

Remember that far away (in wavelengths) from a finite
sound source,

• pressure falls off as 1/r

• intensity falls off as 1/r2

where r is the distance from the source.

Point-to-Point Spherical Pressure-Wave
Simulation:

1/r
x(n) y(n)z−M

21

Acoustic Echo

S L

r
h

d

r

• Source S, Listener L

• Height of S and L above floor is h

• Distance from S to L is d

• Direct sound travels distance d

• Floor-reflected sound travels distance 2r, where

r2 = h2 +

(
d

2

)2

• Direct sound and reflection sum at listener L

pL(t) ∝
pS

(
t− d

c

)

d
+

pS
(
t− 2r

c

)

2r

• Also called multipath

22

Acoustic Echo Simulator

g

y(n)x(n) z−M

• Delay line length set to path-length difference:

M =
2r − d

cT

where

c = sound speed

T = sampling period

• Gain coefficient g set to relative attenuation:

g =
1/2r

1/d
=

d

2r
=

1
√

1 + (2h/d)2

•M typically rounded to nearest integer

• For non-integer M , delay line must be interpolated

23

STK Program for Digital Echo Simulation

The Synthesis Tool Kit (STK)2 is an object-oriented
C++ tool kit useful for rapid prototyping of real-time
computational acoustic models.

#include "FileWvIn.h" /* STK soundfile input support */

#include "FileWvOut.h" /* STK soundfile output support */

#include "Stk.h" /* STK global variables, etc. */

static const int M = 20000; /* echo delay in samples */

static const StkFloat g = 0.8; /* relative gain factor */

#include "delayline.c" /* defined previously */

int main(int argc, char *argv[])

{

unsigned long i;

FileWvIn input(argv[1]); /* read input soundfile */

FileWvOut output("main"); /* creates main.wav */

unsigned long nframes = input.getSize();

for (i=0;i<nframes+M;i++) {

StkFloat insamp = input.tick();

output.tick(insamp + g * delayline(insamp));

}

}

2http://ccrma.stanford.edu/CCRMA/Software/STK/

24

http://ccrma.stanford.edu/CCRMA/Software/STK/

General Loss Simulation

The substitution
z−1 ← gz−1

in any transfer function contracts all poles by the factor g.

Example (delay line):

H(z) = z−M → gMz−M

Thus, the contraction factor g can be interpreted as the
per-sample propagation loss factor.

Frequency-Dependent Losses:

z−1 ← G(z)z−1,
∣
∣G(ejωT)

∣
∣ ≤ 1

G(z) can be considered the filtering per sample in the
propagation medium. A lossy delay line is thus described
by

Y (z) = GM(z)z−MX(z)

in the frequency domain, and iterated convolution

y(n) = g ∗ g ∗ . . . ∗ g∗
︸ ︷︷ ︸

M times

x(n−M)

in the time domain

25

Air Absorption

The intensity of a plane wave is observed to decay
exponentially according to

I(x) = I0 e
−x/ξ

where

I0 = intensity at the plane source (e.g., a vibrating wall)

I(x) = intensity x meters from the plane-source

ξ = intensity decay constant (1/e distance in meters)

(depends on frequency, temperature, humidity

and pressure)

Relative Frequency in Hz
Humidity 1000 2000 3000 4000

40 5.6 16 30 105
50 5.6 12 26 90
60 5.6 12 24 73
70 5.6 12 22 63

Attenuation in dB per kilometer at 20◦C and
standard atmospheric pressure.

26

Acoustic Intensity

Acoustic Intensity (a real vector) may be defined by

I
∆
= pv

(
Energy Flux

Area · Time
=

Power Flux

Area

)

where

p = acoustic pressure
(
Force

Area

)

v = acoustic particle velocity
(
Length

Time

)

For a traveling plane wave, we have

p = Rv

where
R

∆
= ρc

is called the wave impedance of air, and

c = sound speed

ρ = mass density of air
(

Mass

Volume

)

v
∆
= |v|

Therefore, in a plane wave,

I
∆
= pv = Rv2 =

p2

R

27

From 1D+ to 1D±

We have been modeling unidirectional traveling waves:

y(n)x(n) z−M AM (z)

Attenuation per sample = |H(ejωT)|

Phase-shift per sample = ∠H(ejωT)

Thanks to superposition, we can simulate both directions

of propagation in a 1D medium separately and add them
only when needed:

Left-going traveling-wave samples

Right-going traveling-wave samples

Superposition of left- and right-going

z−N

z−N

(Lossless, Non-Dispersive Case)

28

Digital Waveguide Models

z−N

z−N

Physical Signal

There are many musical applications of 1D± simulations:

• vibrating strings

• woodwind bores

• pipes

• horns

• vocal tracts

29

Digital Waveguide Definition

z−N

z−N

R

• A digital waveguide is defined as a “bidirectional delay
line” associated with a (real) wave impedance R > 0

• A digital waveguide simulates ideal wave propagation
(lossless, non-dispersive) exactly for frequencies f
below the Nyquist limit fs/2

• We’ll derive R from first principles later on
(for ideal strings)

30

Physical Outputs

The diagram

Output

z−N

z−N

means summing opposite samples using delay taps:

Output

z−N1

z−N1

z−N2

z−N2

31

Physical Inputs

input signal = disturbance of the propagation medium

General Case

Input Interaction

z−N1

z−N1

z−N2

z−N2

• Interaction can only depend on the “incoming state”
(traveling-wave components) and driving input signal

• Interaction is at one spatial point in this example

• Delay-line inputs from interaction are usually equal in
magnitude (by physical symmetry)

32

Symmetric Superimposing Outgoing Disturbance

Outgoing DisturbanceInteractionInput

z−N1

z−N2

z−N2

z−N1

• Less general but typical

• Outgoing disturbance equal to left and right
(signs may differ)

• Disturbance sums with the incoming waves

– Output superimposes on unperturbed state

– No loss of generality in choosing this formulation
(can always include a canceling term in the output)

33

Pure Superimposing Input

Input

z−N1

z−N1

z−N2

z−N2

• Original state unaffected

• Input sums with existing state

• Often hard to realize physically

34

Idealized Inputs and Outputs

Input

z−N1

z−N1

z−N2

z−N2

Output

z−N1

z−N1

z−N2

z−N2

• Superimposing inputs and non-loading outputs can
only be approximated in real-world systems

• Superimposing input is the graph-theoretic transpose
of an ideal output — two “transposed taps”

– Physical inputs usually disturb the system state
non-additively

– Physical ouputs always present some load on the
system (energy must be extracted)

35

Amplitude-Determined Superimposing
Symmetric Outgoing Disturbance

Incoming

Interaction

Outgoing Disturbance

Input

Amplitude

z−N2

z−N2

z−N1

z−N1

• Interaction depends only upon incoming amplitude

(sum of incoming traveling waves)

• Used in many practical waveguide models

– guitar plectra

– violin bows

– woodwind reeds

– flue-pipe air-jets (flute, organ, . . .)

36

Tapped Delay Lines (TDL)

• A tapped delay line (TDL) is a delay line with at least
one “tap”

• A tap brings out and scales a signal inside the delay
line

• A tap may be interpolating or non-interpolating

x(n−M2)

bM1

Tap Output

x(n)

x(n−M1)

y(n)z−(M2−M1)z−M1

• TDLs efficiently simulate multiple echoes from the
same source

• Extensively used in artificial reverberation

37

Transposed Tapped Delay Line (TTDL)

bM1
bM2

bM3

y(n)

x(n−M2) x(n−M3)

x(n)

b0

x(n−M1)

z−M1 z−(M3−M2)z−(M2−M1)

Tapped Delay Line (TDL)

x(n)

bM2
b0bM3

bM1

y(n)z−(M3−M2) z−(M2−M1) z−M1

Transposed Tapped Delay Line (TTDL)

A flow-graph is transposed (or “reversed”) by reversing
all signal paths:

• Branchpoints become sums

• Sums become branchpoints

• Input/output exchanged

• Transfer function identical for SISO systems

– Derives from Mason’s gain formula

• Transposition converts direct-form I & II digital filters
to two more direct forms

38

Comb Filters

Feedforward Comb Filter

bM

b0

y(n)x(n) z−M

b0 = Feedforward coefficient

bM = Delay output coefficient

M = Delay-line length in samples

Difference Equation

y(n) = b0 x(n) + bM x(n−M)

Transfer Function

H(z) = b0 + bMz−M

Frequency Response

H(ejωT) = b0 + bMe−jMωT

39

Gain Range for Feedforward Comb Filter

bM

b0

y(n)x(n) z−M

y(n) = b0 x(n) + bM x(n−M)

For a sinewave input, with b0, bM > 0:

• Gain is maximum (b0 + bM) when a whole number of

periods fits in M samples:

ωkT = k
2π

M
, k = 0, 1, 2, . . .

(the DFT basis frequencies for length M DFTs)

• Gain is minimum (|b0 − bM |) when an odd number of

half-periods fits in M samples:

ωkT = (2k + 1)
π

M
, k = 0, 1, 2, . . .

40

Feed-Forward Comb-Filter Amplitude Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

Normalized Frequency (cycles per sample))

M
a
g
n
it
u
d
e
 (

L
in

e
a
r)

 a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−15

−10

−5

0

5

10

Normalized Frequency (cycles per sample))

M
a
g
n
it
u
d
e
 (

d
B

)

 b)

g=0.1
g=0.5
g=0.9

• Linear (top) and decibel (bottom) amplitude scales

• H(z) = 1 + gz−M

– M = 5

– g = 0.1, 0.5, 0.9

• G(ω)
∆
=
∣
∣H(ejωT)

∣
∣ =

∣
∣1 + ge−jMωT

∣
∣→

2 cos(MωT/2) when g = 1

• In flangers, these nulls slowly move with time

41

Feedback Comb Filter

b0

x(n)

y(n)

−aM

z−M

−aM = Feedback coefficient (need |aM | < 1 for stability)

M = Delay-line length in samples

Direct-Form-II Difference Equation (see figure):

v(n) = x(n)− aM v(n−M)

y(n) = b0 v(n)

Direct-Form-I Difference Equation
(commute gain b0 to the input):

y(n) = b0 x(n)− aM y(n−M)

Transfer Function

H(z) =
b0

1 + aMz−M

Frequency Response

H(ejωT) =
b0

1 + aMe−jMωT

42

Simplified Feedback Comb Filter

Special case: b0 = 1, −aM = g ⇒

y(n) = x(n) + g y(n−M)

H(z) =
1

1− g z−M

• Impulse response is a series of echoes, exponentially
decaying and uniformly spaced in time:

H(z) =
1

1− g z−M
= 1 + g z−M + g2 z−2M + · · ·

←→ δ(n) + g δ(n−M) + g2 δ(n− 2M) + · · ·

= [1, 0, . . . , 0
︸ ︷︷ ︸

M−1

, g, 0, . . . , 0
︸ ︷︷ ︸

M−1

, g2, 0, . . .]

• Models a plane wave between parallel walls

• Models wave propagation on a guitar string

• g = round-trip gain coefficient:

– two wall-to-wall traversals (two wall reflections)

– two string traversals (two endpoint reflections)

43

Simplified Feedback Comb Filter, Cont’d

g

x(n)

y(n)

z−M

y(n) = x(n) + g y(n−M)

H(z) =
1

1− g z−M

For a sinewave input and 0 < g < 1:

• Gain is maximum [1/(1− g)] when a whole number
of periods fits in M samples:

ωkT = k
2π

M
, k = 0, 1, 2, . . .

These are again the DFTM basis frequencies

• Gain is minimum [1/(1 + g)] when an odd number of
half-periods fits in M samples:

ωkT = (2k + 1)
π

M
, k = 0, 1, 2, . . .

44

Feed-Back Comb-Filter Amplitude Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

Normalized Frequency (cycles per sample))

M
a
g
n
it
u
d
e
 (

L
in

e
a
r)

 a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

20

Normalized Frequency (cycles per sample))

M
a
g
n
it
u
d
e
 (

d
B

)

 b)

g=0.1
g=0.5
g=0.9

• Linear (top) and decibel (bottom) amplitude scales

• H(z) = 1
1−gz−M

•M = 5, g = 0.1, 0.5, 0.9

• G(ω)
∆
=
∣
∣H(ejωT)

∣
∣ =

∣
∣
∣

1
1−ge−jMωT

∣
∣
∣ →

g = 1

1

2 sin(M2 ωT)

45

Inverted-Feed-Back Comb-Filter Amplitude
Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

Normalized Frequency (cycles per sample))

M
a
g
n
it
u
d
e
 (

L
in

e
a
r)

 a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

20

Normalized Frequency (cycles per sample))

M
a
g
n
it
u
d
e
 (

d
B

)

 b)

g=−0.1
g=−0.5
g=−0.9

• Linear (top) and decibel (bottom) amplitude scales

• H(z) = 1
1−gz−M

•M = 5, g = −0.1,−0.5,−0.9

• G(ω)
∆
=
∣
∣H(ejωT)

∣
∣ =

∣
∣
∣

1
1−ge−jMωT

∣
∣
∣ →

g = −1

1

2 cos(M2 ωT)

46

Schroeder Allpass Filters

b0

y(n)x(n)

−aM

z−M

• Used extensively in artificial reverberation

• Transfer function:

H(z) =
b0 + z−M

1 + aMz−M

• To obtain an allpass filter, set b0 = aM

Proof:

∣
∣H(ejωT)

∣
∣ =

∣
∣
∣
∣

a + e−jMωT

1 + ae−jMωT

∣
∣
∣
∣
=

∣
∣
∣
∣

a + e−jMωT

ejMωT + a

∣
∣
∣
∣

=

∣
∣
∣
∣
∣

a + ejMωT

a + ejMωT

∣
∣
∣
∣
∣
= 1

47

First-Order Allpass Filter

Transfer function:

H1(z) = S1(z)
∆
=

k1 + z−1

1 + k1z−1

k1

−k1

x(n)

y(n)

−k1

k1
y(n)x(n)

(a)

(b)

z−1

z−1

(a) Direct form II filter structure

(b) Two-multiply lattice-filter structure

48

Nested Allpass Filter Design

Any delay-element or delay-line inside a stable
allpass-filter can be replaced by any stable allpass-filter to
obtain a new stable allpass filter:

z−1 ← Ha(z) z
−1

(The pure delay on the right-hand-side guarantees no
delay-free loops are introduced, so that the original
structure can be used)

Proof:

1. Allpass Property: Note that the above substitution is
a conformal map taking the unit circle of the z plane
to itself. Therefore, unity gain for |z| = 1 is preserved
under the mapping.

2. Stability: Expand the transfer function in series form:

S
(
[Ha(z)z

−1]−1
)

= s0+s1Ha(z)z
−1+s2H

2
a(z)z

−2+· · ·

where sn = original impulse response. In this form, it
is clear that stability is preserved if Ha(z) is stable.

49

Nested Allpass Filters

H2(z) = S1

(
[z−1S2(z)]

−1
) ∆
=

k1 + z−1S2(z)

1 + k1z−1S2(z)

H2(z) =
1

1 + a1z−1 + a2z−2

−k1

S2(z)

−k2

k1

k2

x(n) y(n)

(a)

(b)

ya(n) Ha(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2

H0(z) =
a2 + a1z

−1 + z−2

1 + a1z−1 + a2z−2

k1

−k1

x(n)

y(n)

−k2
k2

S2(z)

z−1

z−1

ν0 ν2

ν1

z−1

z−1

(a) Nested direct-form-II structures

(b) Two-multiply lattice-filter structure (equivalent)

50

Feedback Delay Network (FDN)

q12 q13
q22 q23
q32 q33

q11
q21
q31

u1(n)

u2(n)

u3(n)

y1(n)

y2(n)

y3(n)

x1(n)

x2(n)

x3(n)

g1
g2

g3

z−M2

z−M3

z−M1

Order 3 MIMO FDN

• “Vectorized Feedback Comb Filter”

• Closely related to state-space representations of LTI

systems (“vectorized one-pole filter”)

• Transfer function, stability analysis, etc., essentially
identical to corresponding state-space methods

51

