Outline

- Lumped and Distributed Modeling
- Delay lines
- Filtered Delay lines
- Digital Waveguides
- Echo simulation
- Comb filters
- Vector Comb Filters (Feedback Delay Networks)
- Tapped Delay Lines and FIR Filters
- Allpass filters
- Artificial Reverberation
As mass-spring\(^1\) density approaches infinity, we obtain an ideal string, governed by “wave equation” PDEs such as

\[Y \ddot{d} = \rho \ddot{\dot{d}} \]

where, for longitudinal displacement \(d(t, x)\), we have

\[
\begin{align*}
Y & \triangleq \text{Young’s Modulus} & d & \triangleq d(t, x) \\
\rho & \triangleq \text{mass density} & \dot{d} & \triangleq \frac{\partial}{\partial t}d(t, x) \\
d & \triangleq \text{longitudinal displacement} & d' & \triangleq \frac{\partial}{\partial x}d(t, x)
\end{align*}
\]

The wave equation is once again Newton’s \(f = ma\), but now for each differential string element:

\[
Y \ddot{d} = \text{force density on the element} \\
\rho \ddot{\dot{d}} = \text{inertial reaction force density} = \text{mass-density times acceleration}
\]

\(^1\)Transverse waves demo: http://phet.colorado.edu/sims/wave-on-a-string/wave-on-a-string_en.html
Transverse Wave Equation: Ideal String

Wave Equation

\[Ky'' = \epsilon y \]

\(K \) \(\Delta \) string tension
\(\epsilon \) \(\Delta \) linear mass density
\(y \) \(\Delta \) string displacement

Newton’s second law

[Force = Mass \times Acceleration]

Assumptions

- Lossless
- Linear
- Flexible (no “Stiffness”)
- Slope \(y'(t, x) \ll 1 \)
Derivation of Transverse String Wave Equation

Force diagram for length dx string element

Total upward force on length dx string element:

$$ f(x + dx/2) = K \sin(\theta_1) + K \sin(\theta_2) $$

$$ \approx K [\tan(\theta_1) + \tan(\theta_2)] $$

$$ = K [-y'(x) + y'(x + dx)] $$

$$ \approx K [-y'(x) + y'(x) + y''(x)dx] $$

$$ = Ky''(x)dx $$

Mass of length dx string segment: $m = \epsilon \, dx$.

By Newton’s law, $f = ma = m\ddot{y}$, we have

$$ Ky''(t, x)dx = (\epsilon \, dx)\ddot{y}(t, x) $$

or

$$ Ky''(t, x) = \epsilon \ddot{y}(t, x) $$
Traveling-Wave Solution

One-dimensional lossless wave equation:

\[Ky'' = \epsilon \ddot{y} \]

Plug in traveling wave to the right:

\[y(t, x) = y_r(t - x/c) \]

\[\Rightarrow \quad y'(t, x) = -\frac{1}{c} \dot{y}(t, x) \]

\[y''(t, x) = \frac{1}{c^2} \ddot{y}(t, x) \]

• Given \(c \triangleq \sqrt{K/\epsilon} \), the wave equation is satisfied for any shape traveling to the right at speed \(c \) (but remember slope \(\ll 1 \))

• Similarly, any left-going traveling wave at speed \(c \), \(y_l(t + x/c) \), satisfies the wave equation (show)
• General solution to lossless, 1D, second-order wave equation:

\[y(t, x) = y_r(t - x/c) + y_l(t + x/c) \]

• \(y_l(\cdot) \) and \(y_r(\cdot) \) are arbitrary twice-differentiable functions (slope \(\ll 1 \))

• **Important point:** Function of two variables \(y(t, x) \) is replaced by two functions of a single (time) variable \(\Rightarrow \) reduced computational complexity.

• Published by d’Alembert in 1747 (wave equation itself introduced in same paper)
Sampled Waves and Lumped Filters

We have that the wave equation $Y d'' = \epsilon \ddot{d}$ is obeyed by any pair of traveling waves

$$d(t, x) = d_r \left(t - \frac{x}{c} \right) + d_l \left(t + \frac{x}{c} \right)$$

- $d_l(\cdot)$ and $d_r(\cdot)$ are arbitrary twice-differentiable displacement functions

- $c = \sqrt{K/\epsilon}$ for transverse waves, and $c = \sqrt{Y/\rho}$ for longitudinal waves, where Y is Young’s modulus = “spring constant” for solids (stress/strain $\Delta = \frac{\text{force-per-unit-area}}{\text{relative displacement}}$), ρ is mass per unit volume (rods), and ϵ is mass per unit length (ideal strings)

- We can sample these traveling-wave components to obtain the super-efficient digital waveguide modeling approach for strings and acoustic tubes (and more)

- Any acoustic “ray” or propagating wave can be implemented digitally using a simple delay line followed by linear filtering to implement loss and/or dispersion:

\[x(n) \xrightarrow{z^{-M}} H^M(z) \xrightarrow{} y(n) \]
Delay lines are important building blocks for many audio effects and synthesis algorithms, including

- Digital audio effects
 - Phasing
 - Flanging
 - Chorus
 - Leslie
 - Reverb

- Physical modeling synthesis
 - Acoustic propagation delay (echo, multipath)
 - Vibrating strings (guitars, violins, . . .)
 - Woodwind bores
 - Horns
 - Percussion (rods, membranes)
The M-Sample Delay Line

\[x(n) \rightarrow z^{-M} \rightarrow y(n) \]

- \(y(n) = x(n - M), \ n = 0, 1, 2, \ldots \)
- Must define \(x(-1), x(-2), \ldots, x(-M) \) (usually zero)
Delay Line as a Digital Filter

\[x(n) \rightarrow z^{-M} \rightarrow y(n) \]

Difference Equation

\[y(n) = x(n - M) \]

Transfer Function

\[H(z) = z^{-M} \]

- \(M \) poles at \(z = 0 \)
- \(M \) zeros at \(z = \infty \)

Frequency Response

\[H(e^{j\omega T}) = e^{-jM\omega T}, \quad \omega T \in [-\pi, \pi) \]

- “Allpass” since \(|H(e^{j\omega T})| = 1 \)
- “Linear Phase” since \(\angle H(e^{j\omega T}) = -M\omega T = \alpha \omega \)
Delay Line in C

C Code:

```c
static double D[M]; /* initialized to zero */
static long ptr=0;  /* read-write offset */

double delayline(double x)
{
    double y = D[ptr]; /* read operation */
    D[ptr++] = x;     /* write operation */
    if (ptr >= M) { ptr -= M; } /* wrap ptr */
    return y;
}
```

- Circular buffer in software
- Shared read/write pointer
- Length not easily modified in real time
- Internal state ("instance variables")
 = length M array + read pointer
Delay Line in Faust

import("stdfaust.lib");
maxDelay = 16;
currentTimeDelay = 5;
process = de.delay(maxDelay, currentTimeDelay);

Generated C++ Code (Optimized!):

class mydsp : public dsp {
 ...
 float fVec0[6];
 ...
 virtual void compute(int count,
 FAUSTFLOAT** inputs,
 FAUSTFLOAT** outputs)
 {
 FAUSTFLOAT* input0 = inputs[0];
 FAUSTFLOAT* output0 = outputs[0];
 for (int i = 0; (i < count); i = (i + 1)) {
 fVec0[0] = float(input0[i]);
 output0[i] = FAUSTFLOAT(fVec0[5]);
 for (int j0 = 5; (j0 > 0); j0 = (j0 - 1)) {
 fVec0[j0] = fVec0[(j0 - 1)];
 }
 }
 }
};
import("stdfaust.lib");
maxDelay = 16;
process(x) = de.delay(maxDelay, x);

Generated C++ Code:

class mydsp : public dsp {
 private:
 int IOTA;
 float fVec0[32];
 ...
 virtual void compute(...
 ...
 for (int i = 0; (i < count); i = (i + 1)) {
 fVec0[(IOTA & 31)] = float(input1[i]);
 output0[i] = FAUSTFLOAT(fVec0[((IOTA - int(std::min<float>(16.0f,
 std::max<float>(0.0f,
 float(input0[i]))) & 31))));
 IOTA = (IOTA + 1);
 }
 }
};
Ideal Traveling-Wave Simulation

\[x(n) \rightarrow z^{-M} \rightarrow y(n) \]

Acoustic Plane Waves in Air

- \(x(n) = \text{excess pressure} \) at time \(nT \), at some fixed point \(p_x \in \mathbb{R}^3 \) through which a plane wave passes
- \(y(n) = \) excess pressure at time \(nT \), for a point \(p_y \) which is \(McT \) meters “downstream” from \(p_x \) along the direction of travel for the plane wave, where
 - \(T \) denotes the \textit{time sampling interval} in seconds
 - \(c \) denotes the \textit{speed of sound} in meters per second
 - In one temporal sampling interval (\(T \) seconds), sound travels one spatial sample (\(X = cT \) meters)

Transverse Waves on a String

- \(x(n) = \text{displacement} \) at time \(nT \), for some point on the string
- \(y(n) = \) transverse displacement at a point \(McT \) meters away on the string
Lossy Traveling-Wave Simulator

\[x(n) \xrightarrow{z^{-M}} y(n) \]

- Propagation delay = \(M \) samples
- Assume (or observe) exponential decay in direction of wave travel
- Distributed attenuation is lumped at one point along the ray: \(g^M < 1 \)
- Input/output simulation is exact at the sampling instants
- Only deviation from ideal is that simulation is bandlimited
Traveling-Wave Simulation with Frequency-Dependent Losses

In all acoustic systems of interest, propagation losses vary with frequency.

- Propagation delay = M samples + filter delay
- Attenuation = $|G(e^{j\omega T})|^M$
- Filter is linear and time-invariant (LTI)
- Propagation delay and attenuation can now vary with frequency
- For physical passivity, we require
 $$|G(e^{j\omega T})| \leq 1$$
 for all ω.
Dispersive Traveling-Wave Simulation

In many acoustic systems, such as piano strings, wave propagation is also dispersive

\[x(n) \rightarrow z^{-M} \rightarrow A^M(z) \rightarrow y(n) \]

- This is simulated using an allpass filter \(A(z) \) having nonlinear phase
- Since dispersive wave propagation is lossless, the dispersion filter is “allpass,” i.e.,
 \[|A(e^{j\omega T})| \equiv 1, \forall \omega \]
- Note that a delay line is also an allpass filter:
 \[|e^{j\omega MT}| \equiv 1, \forall \omega \]
Recursive Allpass Filters

In general, (finite-order) allpass filters can be written as

\[H(z) = e^{j\phi}z^{-K} \frac{\tilde{A}(z)}{A(z)} \]

where

\[A(z) = 1 + a_1z^{-1} + a_2z^{-2} + \cdots + a_Nz^{-N} \]

\[\tilde{A}(z) \triangleq z^{-N}A(z^{-1}) \]

\[\triangleq a_N + a_{N-1}z^{-1} + \cdots + a_1z^{-(N-1)} + \cdots + z^{-N} \]

- The polynomial \(\tilde{A}(z) \) can be obtained by reversing the order of the coefficients in \(A(z) \) and conjugating them
- The problem of dispersion filter design is typically formulated as an allpass-filter design problem
Phase Delay and Group Delay

Phase Response:

\[\Theta(\omega) \triangleq \angle H(e^{j\omega T}) \]

Phase Delay:

\[P(\omega) \triangleq -\frac{\Theta(\omega)}{\omega} \quad \text{(Phase Delay)} \]

Group Delay:

\[D(\omega) \triangleq -\frac{d}{d\omega} \Theta(\omega) \quad \text{(Group Delay)} \]

- For a slowly modulated sinusoidal input signal
 \[x(n) = A(nT) \cos(\omega n T + \phi) \], the output signal is
 \[y(n) \approx G(\omega) A[nT - D(\omega)] \cdot \cos\{\omega[nT - P(\omega)] + \phi\} \]
 where \(G(\omega) \triangleq |H(e^{j\omega T})| \) is the amplitude response.

- Unwrap phase response \(\Theta(\omega) \) to uniquely define it:
 - \(\Theta(0) \triangleq 0 \) or \(\pm \pi \) for real filters
 - Discontinuities in \(\Theta(\omega) \) cannot exceed \(\pm \pi \) radians
 - Phase jumps \(\pm \pi \) radians are equivalent
 - See Matlab function \texttt{unwrap}
Let $x = (x, y, z)$ denote the Cartesian coordinates of a point in 3D space.

- Point source at $x = x_1 = (x_1, y_1, z_1)$
- Listening point at $x = x_2 = (x_2, y_2, z_2)$
- Propagation distance:
 $$r_{12} = \|x_2 - x_1\| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Acoustic pressure peak amplitude (or rms level) at $x = x_2$ is given by

$$p(x_2) = \frac{p_1}{r_{12}}$$

where p_1 is the peak amplitude (or rms level) at $r_{12} = \|x_2 - x_1\| = 1$

Notice that pressure decreases as $1/r$ away from the point source.
Inverse Square Law for Acoustics

The intensity of a sound is proportional to the square of its sound pressure \(p \), where pressure is force per unit area.

Therefore, the average intensity at distance \(r_{12} \) away from a point source of average-intensity

\[
I_1 \propto \langle |p_1|^2 \rangle \quad \text{is} \quad I(x_2) = \frac{I_1}{r_{12}^2}
\]

This is a so-called inverse square law.

Remember that far away (in wavelengths) from a finite sound source,

- pressure falls off as \(1/r \)
- intensity falls off as \(1/r^2 \)

where \(r \) is the distance from the source.

Point-to-Point Spherical Pressure-Wave Simulation:

\[
x(n) \quad \longrightarrow \quad z^{-M} \quad \longrightarrow \quad \frac{1}{r} \quad \longrightarrow \quad y(n)
\]
• Source S, Listener L

• Height of S and L above floor is h

• Distance from S to L is d

• Direct sound travels distance d

• Floor-reflected sound travels distance $2r$, where

$$r^2 = h^2 + \left(\frac{d}{2}\right)^2$$

• Direct sound and reflection sum at listener L

$$p_L(t) \propto \frac{p_S(t - \frac{d}{c})}{d} + \frac{p_S(t - \frac{2r}{c})}{2r}$$

• Also called multipath
Acoustic Echo Simulator

- Delay line length set to *path-length difference*:

\[M = \frac{2r - d}{cT} \]

where

- \(c \) = sound speed
- \(T \) = sampling period

- Gain coefficient \(g \) set to *relative attenuation*:

\[g = \frac{1/2r}{1/d} = \frac{d}{2r} = \frac{1}{\sqrt{1 + (2h/d)^2}} \]

- \(M \) typically *rounded* to nearest integer

- For non-integer \(M \), delay line must be *interpolated*
STK Program for Digital Echo Simulation

The Synthesis Tool Kit (STK)\(^2\) is an object-oriented C++ tool kit useful for rapid prototyping of real-time computational acoustic models.

```c
#include "FileWvIn.h" /* STK soundfile input support */
#include "FileWvOut.h" /* STK soundfile output support */
#include "Stk.h"     /* STK global variables, etc. */

static const int M = 20000;    /* echo delay in samples */
static const StkFloat g = 0.8; /* relative gain factor */

#include "delayline.c" /* defined previously */

int main(int argc, char *argv[]) {
    unsigned long i;
    FileWvIn input(argv[1]); /* read input soundfile */
    FileWvOut output("main"); /* creates main.wav */
    unsigned long nframes = input.getSize();
    for (i=0;i<nframes+M;i++) {
        StkFloat insamp = input.tick();
        output.tick(insamp + g * delayline(insamp));
    }
}
```

\(^2\)http://ccrma.stanford.edu/CCRMA/Software/STK/
General Loss Simulation

The substitution
\[z^{-1} \leftarrow g z^{-1} \]

in any transfer function contracts all poles by the factor \(g \).

Example (delay line):
\[H(z) = z^{-M} \rightarrow g^M z^{-M} \]

Thus, the contraction factor \(g \) can be interpreted as the per-sample propagation loss factor.

Frequency-Dependent Losses:
\[z^{-1} \leftarrow G(z) z^{-1}, \quad |G(e^{j\omega T})| \leq 1 \]

\(G(z) \) can be considered the filtering per sample in the propagation medium. A lossy delay line is thus described by
\[Y(z) = G^M(z) z^{-M} X(z) \]
in the frequency domain, and iterated convolution
\[y(n) = g * g * \ldots * g * x(n - M) \]
\[M \text{ times} \]
in the time domain
The intensity of a *plane wave* is observed to decay exponentially according to

\[I(x) = I_0 e^{-x/\xi} \]

where

- \(I_0 \) = intensity at the plane source (e.g., a vibrating wall)
- \(I(x) \) = intensity \(x \) meters from the plane-source
- \(\xi \) = intensity decay constant (1/e distance in meters) (depends on frequency, temperature, humidity and pressure)

<table>
<thead>
<tr>
<th>Relative Humidity</th>
<th>Frequency in Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>40</td>
<td>5.6</td>
</tr>
<tr>
<td>50</td>
<td>5.6</td>
</tr>
<tr>
<td>60</td>
<td>5.6</td>
</tr>
<tr>
<td>70</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Attenuation in dB per kilometer at 20°C and standard atmospheric pressure.
Acoustic Intensity

Acoustic Intensity (a real vector) may be defined by

\[
I \triangleq p v
\]

\[
\left(\frac{\text{Energy Flux}}{\text{Area} \cdot \text{Time}} \right) = \left(\frac{\text{Power Flux}}{\text{Area}} \right)
\]

where

\[p = \text{acoustic pressure} \quad \left(\frac{\text{Force}}{\text{Area}} \right) \]

\[v = \text{acoustic particle velocity} \quad \left(\frac{\text{Length}}{\text{Time}} \right) \]

For a *traveling plane wave*, we have

\[p = R v \]

where

\[R \triangleq \rho c \]

is called the *wave impedance* of air, and

\[c = \text{sound speed} \]

\[\rho = \text{mass density of air} \quad \left(\frac{\text{Mass}}{\text{Volume}} \right) \]

\[v \triangleq |v| \]

Therefore, in a plane wave,

\[
I \triangleq p v = R v^2 = \frac{p^2}{R}
\]
From 1D+\mp to 1D\pm

We have been modeling *unidirectional* traveling waves:

$$x(n) \xrightarrow{} z^{-M} \xrightarrow{} A^M(z) \xrightarrow{} y(n)$$

Attenuation per sample $= |H(e^{j\omega T})|$

Phase-shift per sample $= \angle H(e^{j\omega T})$

Thanks to *superposition*, we can simulate *both directions of propagation* in a 1D medium *separately* and add them only when needed:

Right-going traveling-wave samples

$$z^{-N}$$

Left-going traveling-wave samples

$$z^{-N}$$

(Successor, Non-Dispersive Case)
Digital Waveguide Models

There are many musical applications of $1D^\pm$ simulations:

- vibrating strings
- woodwind bores
- pipes
- horns
- vocal tracts
A digital waveguide is defined as a “bidirectional delay line” associated with a (real) wave impedance $R > 0$.

A digital waveguide simulates ideal wave propagation (lossless, non-dispersive) exactly for frequencies f below the Nyquist limit $f_s/2$.

We’ll derive R from first principles later on (for ideal strings).
Physical Outputs

The diagram

\[z^{-N} \]

means summing opposite samples using delay taps:
Physical Inputs

input signal = disturbance of the propagation medium

General Case

• Interaction can only depend on the “incoming state” (traveling-wave components) and driving input signal
• Interaction is at one spatial point in this example
• Delay-line inputs from interaction are usually equal in magnitude (by physical symmetry)
Symmetric Superimposing Outgoing Disturbance

- Less general but typical
- Outgoing disturbance equal to left and right (signs may differ)
- Disturbance sums with the incoming waves
 - Output superimposes on unperturbed state
 - No loss of generality in choosing this formulation (can always include a canceling term in the output)
Pure Superimposing Input

• Original state unaffected
• Input *sums* with existing state
• Often hard to realize physically
• Superimposing inputs and non-loading outputs can only be approximated in real-world systems

• Superimposing input is the graph-theoretic transpose of an ideal output — two “transposed taps”

 – Physical inputs usually disturb the system state non-additively
 – Physical outputs always present some load on the system (energy must be extracted)
Amplitude-Determined Superimposing Symmetric Outgoing Disturbance

• Interaction depends only upon *incoming amplitude* (sum of incoming traveling waves)

• Used in many practical waveguide models
 – guitar plectra
 – violin bows
 – woodwind reeds
 – flue-pipe air-jets (flute, organ, . . .)
A tapped delay line (TDL) is a delay line with at least one “tap”

A tap brings out and scales a signal inside the delay line

A tap may be interpolating or non-interpolating

TDLs efficiently simulate multiple echoes from the same source

Extensively used in artificial reverberation
A flow-graph is transposed (or “reversed”) by reversing all signal paths:

- Branchpoints become sums
- Sums become branchpoints
- Input/output exchanged
- Transfer function identical for SISO systems
 - Derives from Mason’s gain formula
- Transposition converts direct-form I & II digital filters to two more direct forms
Comb Filters

Feedforward Comb Filter

\[y(n) = b_0 x(n) + b_M x(n - M) \]

Difference Equation

Transfer Function

\[H(z) = b_0 + b_M z^{-M} \]

Frequency Response

\[H(e^{j\omega T}) = b_0 + b_M e^{-jM\omega T} \]
Gain Range for Feedforward Comb Filter

\[y(n) = b_0 x(n) + b_M x(n - M) \]

For a sinewave input, with \(b_0, b_M > 0 \):

- Gain is maximum \((b_0 + b_M)\) when a whole number of periods fits in \(M \) samples:
 \[\omega_k T = k \frac{2\pi}{M}, \quad k = 0, 1, 2, \ldots \]
 (the DFT basis frequencies for length \(M \) DFTs)

- Gain is minimum \(|b_0 - b_M|\) when an odd number of half-periods fits in \(M \) samples:
 \[\omega_k T = (2k + 1) \frac{\pi}{M}, \quad k = 0, 1, 2, \ldots \]
Feed-Forward Comb-Filter Amplitude Response

- Linear (top) and decibel (bottom) amplitude scales
- \(H(z) = 1 + gz^{-M} \)
 - \(M = 5 \)
 - \(g = 0.1, 0.5, 0.9 \)
- \(G(\omega) \Delta = |H(e^{j\omega T})| = |1 + ge^{-jM\omega T}| \rightarrow 2\cos(M\omega T/2) \) when \(g = 1 \)
- In flangers, these nulls slowly move with time
Feedback Comb Filter

\[y(n) = b_0 v(n) \]

\[y(n) = b_0 x(n) - a_M y(n-M) \]

\[-a_M = \text{Feedback coefficient (need } |a_M| < 1 \text{ for stability)} \]

\[M = \text{Delay-line length in samples} \]

Direct-Form-II Difference Equation (see figure):

\[v(n) = x(n) - a_M v(n-M) \]

Direct-Form-I Difference Equation

(commute gain \(b_0\) to the input):

\[y(n) = b_0 x(n) - a_M y(n-M) \]

Transfer Function

\[H(z) = \frac{b_0}{1 + a_M z^{-M}} \]

Frequency Response

\[H(e^{j\omega T}) = \frac{b_0}{1 + a_M e^{-jM\omega T}} \]
Simplified Feedback Comb Filter

Special case: $b_0 = 1, -a_M = g \Rightarrow$

$$y(n) = x(n) + g y(n - M)$$

$$H(z) = \frac{1}{1 - g z^{-M}}$$

- Impulse response is a series of echoes, exponentially decaying and uniformly spaced in time:

$$H(z) = \frac{1}{1 - g z^{-M}} = 1 + g z^{-M} + g^2 z^{-2M} + \cdots$$

$$\longleftrightarrow \delta(n) + g \delta(n - M) + g^2 \delta(n - 2M) + \cdots$$

$$= [1, 0, \ldots, 0, g, 0, \ldots, 0, g^2, 0, \ldots]$$

- Models a plane wave between parallel walls
- Models wave propagation on a guitar string
- $g =$ round-trip gain coefficient:
 - two wall-to-wall traversals (two wall reflections)
 - two string traversals (two endpoint reflections)
Simplified Feedback Comb Filter, Cont’d

\[y(n) = x(n) + gy(n - M) \]

\[H(z) = \frac{1}{1 - gz^{-M}} \]

For a sinewave input and \(0 < g < 1 \):

- Gain is maximum \([1/(1 - g)]\) when a whole number of periods fits in \(M \) samples:

\[\omega_k T = k \frac{2\pi}{M}, \quad k = 0, 1, 2, \ldots \]

These are again the DFT\(_M\) basis frequencies

- Gain is minimum \([1/(1 + g)]\) when an odd number of half-periods fits in \(M \) samples:

\[\omega_k T = (2k + 1) \frac{\pi}{M}, \quad k = 0, 1, 2, \ldots \]
Feed-Back Comb-Filter Amplitude Response

- Linear (top) and decibel (bottom) amplitude scales
- \(H(z) = \frac{1}{1-gz^{-M}} \)
- \(M = 5, \quad g = 0.1, 0.5, 0.9 \)
- \(G(\omega) \Delta \equiv |H(e^{j\omega T})| = \left| \frac{1}{1-g e^{-jM\omega T}} \right| \xrightarrow{g=1} \frac{1}{2 \sin\left(\frac{M}{2} \omega T\right)} \)
Inverted-Feed-Back Comb-Filter Amplitude Response

- Linear (top) and decibel (bottom) amplitude scales
- \(H(z) = \frac{1}{1-gz^{-M}} \)
- \(M = 5, \quad g = -0.1, -0.5, -0.9 \)
- \(G(\omega) \triangleq |H(e^{j\omega T})| = \left| \frac{1}{1-ge^{-jM\omega T}} \right| \quad \xrightarrow{g=-1} \quad \frac{1}{2}\cos\left(\frac{M}{2}\omega T\right) \)
Schroeder Allpass Filters

- Used extensively in artificial reverberation

- Transfer function:

\[
H(z) = \frac{b_0 + z^{-M}}{1 + a_M z^{-M}}
\]

- To obtain an allpass filter, set \(b_0 = \overline{a_M}\)

Proof:

\[
|H(e^{j\omega T})| = \left| \frac{\overline{a} + e^{-jM\omega T}}{1 + ae^{-jM\omega T}} \right| = \left| \frac{\overline{a} + e^{-jM\omega T}}{e^{jM\omega T} + a} \right|
\]

\[
= \left| \frac{a + e^{jM\omega T}}{a + e^{jM\omega T}} \right| = 1
\]
First-Order Allpass Filter

Transfer function:

\[H_1(z) = S_1(z) \triangleq \frac{k_1 + z^{-1}}{1 + k_1 z^{-1}} \]

(a) Direct form II filter structure

(b) Two-multiply lattice-filter structure
Nested Allpass Filter Design

Any delay-element or delay-line inside a stable allpass-filter can be replaced by any stable allpass-filter to obtain a new stable allpass filter:

\[z^{-1} \leftarrow H_a(z) z^{-1} \]

(The pure delay on the right-hand-side guarantees no delay-free loops are introduced, so that the original structure can be used)

Proof:

1. **Allpass Property:** Note that the above substitution is a conformal map taking the unit circle of the \(z \) plane to itself. Therefore, unity gain for \(|z| = 1 \) is preserved under the mapping.

2. **Stability:** Expand the transfer function in series form:

\[S \left([H_a(z) z^{-1}]^{-1} \right) = s_0 + s_1 H_a(z) z^{-1} + s_2 H_a^2(z) z^{-2} + \cdots \]

where \(s_n = \) original impulse response. In this form, it is clear that stability is preserved if \(H_a(z) \) is stable.
Nested Allpass Filters

\[H_2(z) = S_1 \left(\left[z^{-1} S_2(z) \right]^{-1} \right) \triangleq \frac{k_1 + z^{-1} S_2(z)}{1 + k_1 z^{-1} S_2(z)} \]

(a) Nested direct-form-II structures

(b) Two-multiply lattice-filter structure (equivalent)
Feedback Delay Network (FDN)

Order 3 MIMO FDN

- “Vectorized Feedback Comb Filter”
- Closely related to state-space representations of LTI systems ("vectorized one-pole filter")
- Transfer function, stability analysis, etc., essentially identical to corresponding state-space methods