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• Commuted Synthesis of Bowed Strings
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Bowed Strings

Schematic Model

StringBow

Bow Velocity (Primary Control)

Bow Force

Bow Position

BridgeString-1

Nut  or

Finger Lowpass

Body

v+
ls, v−

rs,

v+
rs,

v−
ls,

vb

A schematic model for bowed-string instruments.

• Bow divides string into two sections

• Bow junction = nonlinear two-port

• Primary control variable = bow velocity
⇒ velocity waves = natural choice of wave variable

• Bow-string interface is analogous to the reed-bore
interface: Find intersection of bow-string friction
curve with the string wave impedance “load line”

• In other words, a velocity input (injected equally to
left and right) must be found such that the transverse
force of the bow against the string is balanced by the
reaction force of the moving string
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Friedlander-Keller Diagram
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Overlay of normalized bow-string friction curve
Rb(v∆)/Rs with the bore “load line” v+∆ − v∆. The

“capture” and “break-away” differential incoming velocity
is denoted vc∆. Note that increasing the bow force
increases vc∆ as well as enlarging the maximum force

applied (at the peaks of the curve).

Applied Force = Friction Curve× Differential Velocity

Reaction Force = String Wave Impedance× Velocity Change

• Nominally, Rb(v∆) is constant for |v∆| ≤ vc∆, where
vc∆ is both the capture and break-away differential
velocity. (static coeff. of friction)

• For |v∆| > vc∆, Rb(v∆) falls quickly to a low dynamic

coefficient of friction

• Dynamic coefficient decreases with differential velocity
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Bow-String Scattering Junction

Friedlander-Keller diagram is solved when

Rb(v∆)× v∆ = Rs

[

v+∆ − v∆
]

which implies (in a manner analogous to the single reed
case)

v−s,r = v+s,l + ρ̂(v+∆) · v
+
∆

v−s,l = v+s,r + ρ̂(v+∆) · v
+
∆, where

vs,r = transverse string velocity on the right of the bow

vs,l = string velocity left of the bow (vs,l = vs,r)

v+∆
∆
= vb − (v+s,r + v+s,l) = “incoming differential velocity”

vb = bow velocity, and

ρ̂(v+∆) =
r (v∆(v

+
∆))

1 + r (v∆(v
+
∆))

where

r(v∆) = 0.25Rb(v∆)/Rs

v∆ = vb − vs bow velocity minus string velocity

vs = v+s,l + v−s,l = v+s,r + v−s,r = transverse string velocity

Rs = wave impedance of string

Rb(v∆) = friction coefficient for the bow against the string, i.e.,

Fb(v∆) = Rb(v∆) · v∆
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Simplified, Piecewise Linear Bow Table
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Simple, qualitatively chosen bow table for the digital
waveguide violin.

• Flat center portion corresponds to a fixed reflection
coefficient “seen” by a traveling wave encountering
the bow stuck against the string

• Outer sections give a smaller reflection coefficient
corresponding to the reduced bow-string interaction
force while the string is slipping under the bow

• The notation vc∆ at the corner point denotes the
capture or break-away differential velocity

• Hysteresis is neglected
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Complete Digital Waveguide Model
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Bow Table

• Reflection filter implements all losses (bridge, bow,
finger, and the round-trip attenuation & dispersion)

• Nut ≈ inverting reflection

• Neglecting bow-hair dynamics, bow-string interaction
is simulated using a memoryless lookup table (or
segmented polynomial) like we had for woodwinds
(where we neglected the mass of the reed)

• The bow-string interface is driven by differential
velocity v+∆ = bow velocity minus the total incoming
string velocity

• Secondary controls are bow force and angle

(changed by modifying the bow table)
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Linear Commuted Violin Synthesis
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• Assumes ideal Helmholtz motion

• Sound examples:

http://ccrma.stanford.edu/~jos/wav/vln-lin-cs.wav
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Multiple-Excitation Commuted Synthesis
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Filtered-Noise Excitation Synthesis
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Commuted Synthesis of the Linearized Violin
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