
Muggling! 
A Wireless Spherical Multi-Axis Musical Controller 

 
Pascal Stang   John R. McCarty  Jeffrey Traer Bernstein 

Music 250a, Stanford University, Fall 2002 

1 Introduction 
Traditional musical instruments require formal training and an understanding of musical 
theory to play. Most electronic or computer based musical instruments are either fettered by 
restrictive slider knobs and buttons or insufficiently constrained to be used effectively (as is 
the case with the instruments such as the Theremin). Humans have a learned reaction to 
spherical objects due to tradition interaction with objects of this shape. The typical spherical 
object encountered is meant to be thrown, bounced, hit, or squeezed, so we all of a basic 
idea of what can be done with a ball. A particularly visually spectacular use of balls is 
juggling, and due to its theme and variation nature provides excellent input of sonification, 
thus is born music + juggling = Muggling! 

1.1 Prior Work 
Prior work in juggling as an interface for computer music has focused on the gestures of the 
performers and not on data acquired from juggling objects. In [3], sensors were placed on 
the jugglers wrists and the only communication with the juggling pins was to control their 
illumination. Prior work on balls as a musical interface has centered on squeezing of balls as 
in [4]. Sensing of the movement of an object for musical expression has mostly been used 
for conducting (or simulation of conducting) of orchestras as in [1],[2], or Max Mathews’ 
Radio Batton. 

1.2 System 
The Muggling! ball contains four two-axis accelerometers, four RGB LEDs a 
microprocessor and a transmitter receiver pair. Data regarding the ball’s acceleration is 
transmitted to the base which contains a microprocessor and transmitter receiver pair, that 
converts the data to midi signals which are routed to a computer which provides the musical 
mapping. 

figure 1, Receiver and Ball Transmitter Block Diagram 

accelerometer 

MIDI 
14 bit signed ints 

Hello 
world! 

Rx 

Tx 

AVR 

Rx 

Tx AVR 



2 Musical Mappings 

2.1 Chinese Baoding Ball 
This mapping is similar to Chinese Baoding balls and has a similar relaxing quality. While 
Baoding balls have a single plate inside for producing sound, our electronic version has 12 
biquad resonators that are triggered with an impulse based on the amount of acceleration in 
X and Y directions. Figure 2 provides a conceptual view of the instrument. Chimes are 
spread around the perimeter of the ball and an simulated actuator rolls around inside the ball 
as it is rotated and strikes the chimes. See appendices for pd implementation. 

chime 

actuator 

figure 2, model of chimes in ball 

2.2 Scratching 
In scratching the tilt in one dimension is mapped to a position within an audio file so that 
rotating or pushing the ball back and forward is equivalent to moving a record, producing 
the “scratch” sound popular in Hip Hop music and its derivatives. Shaking the ball in one 
dimension as actually fairly analogous to the actual motion. Using the ball overcomes the 
physical limitations of the medium such as skipping, and requires less skill since many 
motions will produce the desired effect instead of one technique that requires significant 
practice to master. In fact a wide range of motions make for interesting sounds including 
contact juggling, which proved to be visually intriguing as well since the juggler’s movements 
abstracted the connection between specific movement and sound but still demonstrated a 
causal connection.  
 
In scratching the tempo of the background beat was set by shaking the ball. The running 
average of the time between 4 shakes was taken and the playback speed of the background 
beat is set. 

2.3 Two-Dimensional Visualization and Four Channel Panning 
A particularly educational mapping is tilt in two dimensions to two-dimensional position. 
When implemented in pd, this allowed us better understand the input we were receiving 
from the ball. Mapping this input to four channel panning the user can use the ball to place 
sound two-dimensionally within a room 



3 Implementation 

3.1 Ball Transmitter 
The ball contains 4 Analog Devices 2-axis 2G accelerometers, two are mounted facing up 
and two are mounted facing the exterior of the ball. The accelerometers provide about 8 bits 
of usable resolution which sampled at 100 Hz by the analog to digital converters on the 
Atmel microprocessor. The data from the sensors is then filtered with a one-pole lowpass 
filter to prevent aliasing since the transmission occurs at a slower rate, the filtering also 
interpolates the data to a further signed 14 bits which are transmitted to the base via the Linx 
Transmitter (a receiver is also included to allow for timing of communications between 
multiple balls in the future). The ball is powered by 4 1.3 V NiMH batteries mounted to 
ensure gravity is properly centered. 

 

x 

y 

 
Linear
by add
3 and 
 
Four R
each c

3.2 R
The re
an ins
receive
are the
Linx r
is disp
 

 alinear aangular 
x (x1+x2)/2 (x1-x2)/2 
y (y1-y2)/2 (y1+y2)/2 
z (z1-z2)/2 (z1+z2)/2 
table 1, sensor calculations   figure 3, sensor geometry 

z 

 and angular acceleration are calculated from the two-dimensional accelerometer data 
ing or subtracting the appropriate dimensions from each sensor as displayed in figure 
table 1. 

GB LEDs where also added to the ball these changed through 16 discrete values of 
olour according to the data from each sensor. 

eceiver Base 
ceiver base receives data from the ball sensors and converts it to MIDI to be sent to 
trument (in this case a linux computer running PD). The 14 bit signed integers 
d are encoded as two 7 bit numbers sent as note and velocity over MIDI, these values 
n decoded in PD before they are used. The base consists of Atmel microprocessor, a 

eceiver-transmitter pair, and a liquid crystal display. Instant feedback from the sensors 
layed on the LCD. 



4 Conclusions and the Future 
Our design from inception to completion remained fairly consistent, and the final product 
was relatively close to the initial concept. Thanks to incredible hardware design knowledge 
the most crucial design element, wireless capability, was achieved successfully. The biggest 
design change was not making the ball able to bounce, which was mostly a product of time 
limitations.  At a late stage we decided not to include pressure sensors on the surface of the 
ball. This decision was made partly for aesthetics and also having pressure sensors of the 
hard shell of the ball affected its contour and ability to roll. Also, if the device were used for 
juggling the pressure sensors would not be useful since very little squeezing would occur. 
Our musical concept for the ball was as a juggling instrument, either as a percussive ground 
juggling device or more melodic traditional juggling controller. However, since the ball 
ended up being rather fragile and not bouncy this concept was pushed aside. This is 
probably the most unsatisfying aspect of the final product.  Having a completely wireless 
spherical controller offers so many possibilities that we were unable to adequately explore 
without potentially destroying the device. In the end our ball could have had wires attached 
and still controlled our demonstration patches perfectly. Our example mappings and patches 
did not appropriately exploit the wireless quality of the device.   
 
There are several future enhancements that could be made to improve the usability and 
function of the device. Obviously it needs to bounce. Also, the addition of 2 more 
accelerometers would provide complete measurement of motion in each plane. It would be 
ideal to have several balls that can be used simultaneously; this presents several hurdles. If 
the balls all transmit on the same frequency then their transmissions must be shared. It 
might be possible to have a separate transmitter receiver for each ball, but then the hardware 
requirements and costs would grow rapidly.  There are several problems that must be solved 
before a complete set of “muggling” balls can be produced. Another interesting 
enhancement for use as a handheld device is the addition of 2 motor driven perpendicular 
gyroscopes inside the ball that would provide haptic feedback through resistance to tilt. 
 
Ultimately, we were satisfied with our final product. It lived up to most of our design 
expectations.  The ball was both comfortable to hold and pleasant to look at, and the music 
results were both interesting and entertaining. 



References 
[1] Teresa Marrin and Joseph Paradiso,  "The Digital Baton: a Versatile Performance 

Instrument" Proceedings of the International Computer Music Conference, pp. 313-316,  
Thessaloniki, Greece, September 1997. 

 
[2] Jan Borcher, “WorldBeat: Designing a Baton-Based Interface for an Interactive Music 

Exhibit”, Proceedings of ACM CHI ’97, Atlanta, Georgia, March 1997. 
 
[3] Mathew Reynolds, et al., “An Immersive, Multi-User Musical Stage Environment”, 

Proceedings ACM Siggraph 2001, ACM Press, NY. 
 
[4] Weinberg, G., Orth M., and Russo P. (2000) "The Embroidered Musical Ball: A 

Squeezable Instrument for Expressive Performance," Proceedings of CHI 2000. The 
Hague: ACM Press. 

 



A PD Patches 
Provided with acceleration and angle in three axes via midi from the ball, the ballout patch 
was used to decode the data, calculate the total magnitude of acceleration, and pipe it to one 
of seven outlets.   
 

 
Figure 1  - ballout.pd 

 

The decoder patch is used to translate the 
14 bit 2’s complement data sent from the 
AVR as midi note and velocity values into 
floating point values for use in pd.  
 

 

 
Figure 2  - decoder.pd 

 

The chime patch was implemented using 
the biquad~ object in pd.   By setting the 
coefficients appropriately a constant gain 
resonator with sweepable center 
frequency is created.  When this filter is 
sent a bang as input, it rings like a chime.  
The full patch is shown at the end of this 
section which is made up of 12 
resonators set to different frequencies.  
The X and Y accelerations are each 
mapped to six resonators, as the ball is 
accelerated in either X or Y direction the 
chimes are banged, with each chime 
mapped to a specific acceleration value.   

 

 
Figure 3 - resonator 

 



When using the ball as a hand held controller, tilt values are mapped to signal controls.  The 
graphic grid object gives visual feedback for the balls tilt position in the X-Y plane. Below, 
the positional display is combined with a 4-channel panning patch.   The ball can be used to 
move sound around in space while not confining the user to a particular location within the 
room. 

Figure 4 - Four channel panner 
 
The scratch patch maps X-tilt value to a position within an audio file. Tilting the ball left and 
right scrolls through the file at a rate proportional to the velocity of ball movement. The 
orange horizontal slider gives graphic feedback for the current scratch position within the 
sample file.  Although simple, this seemed to be a hit with the audience.   
 



 
Figure 5 – scratcher.pd 

 
 
The beat external object used in 
scratcher.pd is mapped to magnitude of 
acceleration.  When the ball is 
accelerated with a large amount of force 
the magnitude surpasses a preset 
threshold and sends out a bang. 
A timer is used to measure the time 
between successive bangs, which is 
converted to a bpm value. An average of 
four successive measurements is taken 
and a temp value is sent from the outlet.  
This allows the tempo to be adjusted by 
shaking the ball in time at the desired 
tempo.   The threshold can be adjusted 
so that the tempo is not affected unless a 
large amount of force is applied which 
avoids accidental tempo changes.   A 
slight modification of this patch would 
allow the ball to be used as an electronic 
shaker or maraca type instrument. Also 
this can be used for playback control of 
a midi score or preset sequence of notes.   

 
Figure 6 - beat.pd 

 
 
  



Below are two abandoned patches that mapped ball movement directly to audio parameters.  
Since the acceleration values change very rapidly and almost arbitrarily as the ball rolls, 
output of these patches was not very satisfying was quite random.  The simple patch maps 
acceleration to oscillator frequency.  While the buzz patch has predefined pitches that are 
mapped to particular ranges of the X-acceleration, Y and Z acceleration are mapped to 
timbre and harmonic content, and magnitude is mapped to volume.  The buzz patch may 
have been more successful if ball could bounce or was less fragile so it could be safely tossed 
into the air. 
 

 
Figure 7 - simple.pd 

 

 
Figure 8 - buzz.pd 



 
Fi

gu
re 

9 
- c

him
e.p

d 



B Schematics 

06-12-2002-0001 A

Muggling Ball - Processor and LEDs

Pascal Stang - Copyright 2002
Procyon Engineering

A

1 3Friday, December 06, 2002

Title

Size Document Number Rev

Date: Sheet of

VCC VCCVCC

VCC

R5
100K

C1
0.1uF

D1 LED RED

D5 LED GREEN

D4 LED RED

D3 LED BLUE 

D2 LED GREEN

D9 LED BLUE 

D8 LED GREEN

D7 LED RED

D6 LED BLUE 

C3
0.1uF

Y1

8MHzC2
0.1uF

U1

ATmega163/323

1
2
3
4
5
6
7
8

14
15
16
17
18
19
20
21

9

10
11
12
13

22
23
24
25
26
27
28
29

30
31
32

33
34
35
36
37
38
39
40PB0 (T0)

PB1 (T1)
PB2 (AIN0)
PB3 (AIN1)
PB4 (SS)
PB5 (MOSI)
PB6 (MISO)
PB7 (SCK)

PD0 (RXD)
PD1 (TXD)
PD2 (INT0)
PD3 (INT1)
PD4 (OC1B)
PD5 (OC1A)
PD6 (ICP)
PD7

RESET

VCC
GND
XTAL2
XTAL1

(SCL) PC0
(SDA) PC1

PC2
PC3
PC4
PC5

(TOSC1) PC6
(TOSC2) PC7

AVCC
AGND
AREF

(ADC7) PA7
(ADC6) PA6
(ADC5) PA5
(ADC4) PA4
(ADC3) PA3
(ADC2) PA2
(ADC1) PA1
(ADC0) PA0

R2 135

R1 135

R3 50

R8 135

R7 50

R6 135

R4 135

R10 50

R9 135

D10 LED RED

D11 LED GREEN

R11 135

R12 135

R13 50 D12 LED BLUE 

RGB LEDS

ADC0
ADC1
ADC2
ADC3
ADC4
ADC5
ADC6
ADC7

RXD
TXD

XTAL2
XTAL1

XLPWR0
XLPWR1
XLPWR2
XLPWR3

XTAL1

XTAL2

RED0
RED1
RED2

GREEN3

GREEN1
GREEN0
BLUE3
BLUE2
BLUE1
BLUE0

RED0

BLUE2

GREEN3

BLUE3

BLUE0

GREEN0

RED2

RED1

GREEN1

BLUE1

B
LU

E
[0

:3
]

GREEN2

RED3

G
R

E
E

N
[0

:3
]

RED3

R
E

D
[0

:3
]

GREEN2

RED[0:3]

GREEN[0:3]

BLUE[0:3]

XLPWR0

ADC0

ADC1

XLPWR1

ADC2

ADC3

XLPWR2

ADC4

ADC5

ADC6

ADC7

XLPWR3

06-12-2002-0001 A

Muggling Ball - Sensors

Pascal Stang - Copyright 2002
Procyon Engineering

A

2 3Friday, December 06, 2002

Title

Size Document Number Rev

Date: Sheet of

R14
100K

U2
ADXL202E

1

2

3

4

5

6

7

8

ST

T2

COM

YO
U

T

XOUT

YFILT

XFILT VD
D

C8
0.047uF

C9
0.047uF

U4
ADXL202E

1

2

3

4

5

6

7

8

ST

T2

COM

YO
U

T

XOUT

YFILT

XFILT VD
D

R16
100K

C4
0.047uF

C5
0.047uF

U3
ADXL202E

1

2

3

4

5

6

7

8

ST

T2

COM

YO
U

T

XOUT

YFILT

XFILT VD
D

C10
0.047uF

R15
100K

C6
0.047uF

C7
0.047uF

U5
ADXL202E

1

2

3

4

5

6

7

8

ST

T2

COM

YO
U

T

XOUT

YFILT

XFILT VD
D

R17
100K

C11
0.047uF

XY-1 ACCELEROMETERS

XY-2 ACCELEROMETERS

YZ-1 ACCELEROMETERS

YZ-2 ACCELEROMETERS



 

06-12-2002-0001 A

Muggling Ball - 315/418/433MHz Radio Data Transceiver

Pascal Stang - Copyright 2002
Procyon Engineering

A

3 3Friday, December 06, 2002

Title

Size Document Number Rev

Date: Sheet of

VCC

VCC

E1
TX ANTENNA

1

U6

TXM-418-LC

1

2

3

4 5

6

7

8GND1

DATA

GND2

LADJ ANT

GND3

VCC

GND4

U8

RXM-418-LC-S

1

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16NC

NC

NC

GND1

VCC

PDN

NC

DATA NC

NC

NC

NC

NC

NC

GND2

ANT

E2
RX ANTENNA

1

U7C

74HCT04

5 6

U7F

74HCT04

1312

R19
200

R18
430

U7B

74HCT04

3 4

U7E

74HCT04

1110

U7D

74HCT04

98

U7A

74HCT04

1 2

RADIO RECEIVER

RECEIVE DATA BUFFER

RADIO TRANSMITTERTRANSMIT DATA BUFFER

TXD

RXD

AVR_TXD

AVR_RXD



C Code 

C.1 Base 
//***************************************************************************** 
// File Name : base.c 
// Title  : ball receiver test code 
// Revision  : 0.1 
// Notes  :  
// Target MCU : Atmel AVR series 
// Editor Tabs : 4 
//  
// Revision History: 
// When   Who   Description of change 
// ----------- ----------- ----------------------- 
// 20-Oct-2002 pstang  Created the program 
//***************************************************************************** 
 
//----- Include Files --------------------------------------------------------- 
#include <io.h>   // include I/O definitions (port names, pin names, 
etc) 
#include <sig-avr.h> // include "signal" names (interrupt names) 
#include <interrupt.h> // include interrupt support 
#include <progmem.h> 
 
#include "global.h"  // include our global settings 
#include "uart2.h"  // include uart function library 
#include "rprintf.h" // include printf function library 
#include "timer128.h" // include timer function library 
#include "lcd.h"  // include lcd support 
#include "a2d.h"  // include A/D support 
#include "stxetx.h"  // include STX/ETX packet support 
 
 
#define MIDI_NOTE_ON  0x90 
#define MIDI_NOTE_OFF  0x80 
 
// 1001cccc 0nnnnnnn 0vvvvvvv 
#define MIDI_POLY_PRESSURE  0xA0 
// 1011cccc 0nnnnnnn 0vvvvvvv 
#define MIDI_CONTROL_CHANGE 0xB0 
// 1100cccc 0ppppppp 
#define MIDI_PROGRAM_CHANGE 0xC0 
 
#define MIDI_DATA_MASK   0x7F 
#define MIDI_STATUS_MASK  0xF0 
#define MIDI_CHANNEL_MASK  0x0F 
 
#define MIDI_BAUD_RATE   31250 
 
struct 
{ 
 u16 X; 
 u16 Y; 
 u16 Z; 
 u16 Xr; 
 u16 Yr; 
 u16 Zr; 
} Accel; 
 
void go(void); 
u08 getSw(void); 
void midiNoteOnOut(u08 note, u08 vel, u08 channel); 
 
int main(void) 
{ 
 // initialize the AVRlib libraries 
 timerInit();     // initialize the timer system 



 uartInit();     // initialize the UART (serial port) 
 lcdInit(); 
 rprintfInit(uart1SendByte); // init rprintf 
 a2dInit(); 
 stxetxInit(uart0SendByte); // init stxetx 
  
 // set the radio comm baud rate 
 uartSetBaudRate(0,4800); 
 // print a debug message 
 uartSetBaudRate(1,38400); 
 rprintf("Base power on!\r\n"); 
 // set the midi comm baud rate 
 uartSetBaudRate(1,38400); 
 
 // disable RAM 
 sbi(DDRC, 7); 
 cbi(PORTC, 7); 
 
 // get the lcd bias voltage set 
 sbi(DDRB, 5); 
 cbi(PORTB, 5); 
 
 go(); 
 
 return 0; 
} 
 
void go(void) 
{ 
 u08* ptr; 
 u16 sample=0; 
 
 lcdClear(); 
 
 while(1) 
 { 
  rprintfInit(lcdDataWrite); 
  lcdGotoXY(0,0); 
  rprintf("X"); lcdProgressBar(Accel.X, 256, 14); rprintfu16(Accel.X); 
 
  lcdGotoXY(0,1); 
  rprintf("Y"); lcdProgressBar(Accel.Y, 256, 14); rprintfu16(Accel.Y); 
 
  lcdGotoXY(20,0); 
  rprintf("Z"); lcdProgressBar(Accel.Z, 256, 14); rprintfu16(Accel.Z); 
 
  lcdGotoXY(20,1); 
  rprintf("Sample: "); rprintfu32(sample); 
 
  // input STX/ETX report packet 
  if(stxetxProcess(uartGetRxBuffer(0))) 
  { 
   // get pointer to packet data 
   ptr = stxetxGetRxPacketData(); 
   // retrieve data values 
   Accel.X = (ptr[0]<<8) + ptr[1]; 
   Accel.Y = (ptr[2]<<8) + ptr[3]; 
   Accel.Z = (ptr[4]<<8) + ptr[5]; 
   Accel.Xr = ptr[6]; 
   Accel.Yr = ptr[7]; 
   Accel.Zr = ptr[8]; 
   sample = (ptr[9]<<8) + ptr[10]; 
 
   midiNoteOnOut(Accel.X>>7, Accel.X, 0); 
   midiNoteOnOut(Accel.Y>>7, Accel.Y, 1); 
   midiNoteOnOut(Accel.Z>>7, Accel.Z, 2); 
   midiNoteOnOut(Accel.Xr>>7, Accel.Xr, 3); 
   midiNoteOnOut(Accel.Yr>>7, Accel.Yr, 4); 
   midiNoteOnOut(Accel.Zr>>7, Accel.Zr, 5); 
   midiNoteOnOut(sample>>7, sample, 6); 
    



   //rprintfInit(uart1SendByte); 
   //rprintf("Packet: X=%x, Y=%x, Z=%x\r\n",Accel.X,Accel.Y,Accel.Z); 
  } 
 
 } 
} 
 
void midiNoteOnOut(u08 note, u08 vel, u08 channel) 
{ 
 uart1SendByte(MIDI_NOTE_ON | (channel & MIDI_CHANNEL_MASK)); 
 uart1SendByte(MIDI_DATA_MASK & note); 
 uart1SendByte(MIDI_DATA_MASK & vel); 
} 
 
u08 getSw(void) 
{ 
 u08 sw; 
 // get switch status 
 sw = (~inp(PINB)>>4)&0x0F; 
 if(sw==4) sw=3; 
 if(sw==8) sw=4; 
 return sw; 
} 
 
 



C.2 Receiver Ball 
//***************************************************************************** 
// File Name : ball.c 
// Title  : ball code 
// Revision  : 0.1 
// Notes  :  
// Target MCU : Atmel AVR series 
// Editor Tabs : 4 
//  
// Revision History: 
// When   Who   Description of change 
// ----------- ----------- ----------------------- 
// 20-Oct-2002 pstang  Created the program 
//***************************************************************************** 
 
//----- Include Files --------------------------------------------------------- 
#include <io.h>   // include I/O definitions (port names, pin names, 
etc) 
#include <sig-avr.h> // include "signal" names (interrupt names) 
#include <interrupt.h> // include interrupt support 
#include <progmem.h> 
 
#include "global.h"  // include our global settings 
#include "uart.h"  // include uart function library 
#include "rprintf.h" // include printf function library 
#include "timer.h"  // include timer function library 
#include "a2d.h"  // include A/D support 
#include "stxetx.h"  // include STX/ETX packet support 
#include "pwmcolor.h" 
 
#define NUM_CH   8 
#define FIXED_PT_BITS 4 
#define INTEGER_BITS 10 
 
#define CHX0   1 
#define CHX1   3 
#define CHY0   4 
#define CHY1   6 
#define CHZ0   5 
#define CHZ1   7 
#define CHC0   0 
#define CHC1   2 
 
#define ACCEL1_PWR  PB0 
#define ACCEL2_PWR  PB1 
#define ACCEL3_PWR  PB2 
#define ACCEL4_PWR  PB3 
 
#define LEDR_PORT  PORTB 
#define LEDG_PORT  PORTC 
#define LEDB_PORT  PORTC 
 
#define LEDR_DDR  DDRB 
#define LEDG_DDR  DDRC 
#define LEDB_DDR  DDRC 
 
#define LED0R   PB4 
#define LED1R   PB5 
#define LED2R   PB6 
#define LED3R   PB7 
 
#define LED0G   PC4 
#define LED1G   PC5 
#define LED2G   PC6 
#define LED3G   PC7 
 
#define LED0B   PC0 
#define LED1B   PC1 
#define LED2B   PC2 



#define LED3B   PC3 
 
typedef struct 
{ 
 s16 value; 
 s32 valuefilt; 
 s32 scale; 
 s32 offset; 
} a2dChannel; 
 
struct 
{ 
 a2dChannel ch[NUM_CH]; 
 s16 filtCoeff; 
 u32 sample; 
} a2dData; 
 
struct 
{ 
 u16 X; 
 u16 Y; 
 u16 Z; 
 u16 Xr; 
 u16 Yr; 
 u16 Zr; 
} Accel; 
 
unsigned char packet[20]; 
 
void run(void); 
void sample(void); 
 
int main(void) 
{ 
 // initialize the AVRlib libraries 
 timerInit();     // initialize the timer system 
 uartInit();     // initialize the UART (serial port) 
 uartSetBaudRate(4800); 
 rprintfInit(uartSendByte); // init rprintf 
 a2dInit(); 
 stxetxInit(uartSendByte); // init stxetx 
 
 // turn receiver off 
 //cbi(UCSRB, RXEN); 
 //cbi(UCSRB, RXCIE); 
 
 // send a clear-text power-on message 
 rprintf("\r\n\r\nBall power on!\r\n"); 
 
 // blink LEDs 
 outb(LEDR_DDR, 0xFF); 
 outb(LEDG_DDR, 0xFF); 
 outb(LEDB_DDR, 0xFF); 
 outb(LEDR_PORT, 0x00); 
 outb(LEDG_PORT, 0x00); 
 outb(LEDB_PORT, 0x00); 
 timerPause(1000); 
 outb(LEDR_PORT, 0xFF); 
 outb(LEDG_PORT, 0xFF); 
 outb(LEDB_PORT, 0xFF); 
 
 run(); 
 
 return 0; 
} 
 
void run(void) 
{ 
 u08 i=0; 
 
 // set filters 



 a2dData.filtCoeff = 10; 
 a2dData.sample = 0; 
 // set sensor coeffs 
 a2dData.ch[0].offset = -0x05; 
 a2dData.ch[0].scale = 1<<FIXED_PT_BITS; 
 a2dData.ch[1].offset = 0x0B; 
 a2dData.ch[1].scale = 1<<FIXED_PT_BITS; 
 a2dData.ch[2].offset = 0x0A; 
 a2dData.ch[2].scale = 1<<FIXED_PT_BITS; 
 a2dData.ch[3].offset = -0x05; 
 a2dData.ch[3].scale = 1<<FIXED_PT_BITS; 
 a2dData.ch[4].offset = 0x09; 
 a2dData.ch[4].scale = 1<<FIXED_PT_BITS; 
 a2dData.ch[5].offset = 0x0C; 
 a2dData.ch[5].scale = 1<<FIXED_PT_BITS; 
 a2dData.ch[6].offset = -0x03; 
 a2dData.ch[6].scale = 1<<FIXED_PT_BITS; 
 a2dData.ch[7].offset = -0x0B; 
 a2dData.ch[7].scale = 1<<FIXED_PT_BITS; 
 
 // setup a2d converter 
 a2dSetPrescaler(ADC_PRESCALE_DIV8); 
 a2dSetReference(ADC_REFERENCE_AVCC); 
 
 // turn on accelerometers 
 sbi(DDRB,  ACCEL1_PWR); 
 sbi(DDRB,  ACCEL2_PWR); 
 sbi(DDRB,  ACCEL3_PWR); 
 sbi(DDRB,  ACCEL4_PWR); 
 sbi(PORTB, ACCEL1_PWR); 
 sbi(PORTB, ACCEL2_PWR); 
 sbi(PORTB, ACCEL3_PWR); 
 sbi(PORTB, ACCEL4_PWR); 
 
 // schedule sampling routine 
 timer2SetPrescaler(TIMER_CLK_DIV1024); 
 timerAttach(TIMER2OVERFLOW_INT, sample); 
 
 // initialize LEDs 
 timer1SetPrescaler(TIMER_CLK_DIV256); 
 pwmswInit(0x0200); 
 pwmswPWMSet(0, 0x0000); 
 pwmswPWMSet(1, 0x0000); 
 pwmswPWMSet(2, 0x0000); 
 
 
 while(1) 
 { 
  s16 x,y,z; 
  u16 c; 
  // calculate linear accelerations 
  Accel.X = (a2dData.ch[CHX0].valuefilt+a2dData.ch[CHX1].valuefilt)-
(0x0400<<FIXED_PT_BITS); 
  Accel.Y = (a2dData.ch[CHY0].valuefilt-a2dData.ch[CHY1].valuefilt); 
  Accel.Z = (a2dData.ch[CHZ0].valuefilt+a2dData.ch[CHZ1].valuefilt)-
(0x0400<<FIXED_PT_BITS); 
  c = (a2dData.ch[CHC0].valuefilt-a2dData.ch[CHC1].valuefilt); 
 
  // calculate angular accelerations 
  Accel.Xr = a2dData.ch[CHX0].valuefilt-a2dData.ch[CHX1].valuefilt; 
  Accel.Yr = a2dData.ch[CHY0].valuefilt+a2dData.ch[CHY1].valuefilt; 
  Accel.Zr = a2dData.ch[CHZ0].valuefilt-a2dData.ch[CHZ1].valuefilt; 
 
  // reprocess to arbitrary bit length 
  x = Accel.X; 
  y = Accel.Y; 
  z = Accel.Z; 
  x = x>>(FIXED_PT_BITS-2); 
  y = y>>(FIXED_PT_BITS-2); 
  z = z>>(FIXED_PT_BITS-2); 
 



  // output STX/ETX report packet 
  packet[0] = x>>8; 
  packet[1] = x; 
  packet[2] = y>>8; 
  packet[3] = y; 
  packet[4] = z>>8; 
  packet[5] = z; 
  packet[6] = Accel.Xr>>(FIXED_PT_BITS+3); 
  packet[7] = Accel.Yr>>(FIXED_PT_BITS+3); 
  packet[8] = Accel.Zr>>(FIXED_PT_BITS+3); 
  packet[9] = a2dData.sample>>8; 
  packet[10] = a2dData.sample; 
  stxetxSend(0x00, 0x55, 11, packet); 
 
  //timerPause(10); 
  i++; 
 
  // LED dimming 
  pwmswPWMSet(0, (ABS(x)>>0) & 0x01C0); 
  pwmswPWMSet(1, (ABS(y)>>0) & 0x01C0); 
  pwmswPWMSet(2, (ABS(z)>>0) & 0x01C0); 
  //pwmswPWMSet(0, (i<<2) & 0x1C0); 
  //pwmswPWMSet(1, (i<<2) & 0x1C0); 
  //pwmswPWMSet(2, (i<<2) & 0x1C0); 
 
/* 
  // LED rendering 
  // red LEDs 
  if(x>0) 
  { 
   cbi(LEDR_PORT, LED0R); 
   cbi(LEDR_PORT, LED1R); 
   cbi(LEDR_PORT, LED2R); 
   cbi(LEDR_PORT, LED3R); 
  } 
  else 
  { 
   sbi(LEDR_PORT, LED0R); 
   sbi(LEDR_PORT, LED1R); 
   sbi(LEDR_PORT, LED2R); 
   sbi(LEDR_PORT, LED3R); 
  } 
 
  // green LEDs 
  if(y>0) 
  { 
   cbi(LEDG_PORT, LED0G); 
   cbi(LEDG_PORT, LED1G); 
   cbi(LEDG_PORT, LED2G); 
   cbi(LEDG_PORT, LED3G); 
  } 
  else 
  { 
   sbi(LEDG_PORT, LED0G); 
   sbi(LEDG_PORT, LED1G); 
   sbi(LEDG_PORT, LED2G); 
   sbi(LEDG_PORT, LED3G); 
  } 
 
  // blue LEDs 
  if(z>0) 
  { 
   cbi(LEDB_PORT, LED0B); 
   cbi(LEDB_PORT, LED1B); 
   cbi(LEDB_PORT, LED2B); 
   cbi(LEDB_PORT, LED3B); 
  } 
  else 
  { 
   sbi(LEDB_PORT, LED0B); 
   sbi(LEDB_PORT, LED1B); 



   sbi(LEDB_PORT, LED2B); 
   sbi(LEDB_PORT, LED3B); 
  } 
*/ 
/* 
  // channel output 
  rprintf("  CH0:"); rprintfu16(a2dData.ch[0].valuefilt>>FIXED_PT_BITS); 
  rprintf("  CH1:"); rprintfu16(a2dData.ch[1].valuefilt>>FIXED_PT_BITS); 
  rprintf("  CH2:"); rprintfu16(a2dData.ch[2].valuefilt>>FIXED_PT_BITS); 
  rprintf("  CH3:"); rprintfu16(a2dData.ch[3].valuefilt>>FIXED_PT_BITS); 
  rprintf("  CH4:"); rprintfu16(a2dData.ch[4].valuefilt>>FIXED_PT_BITS); 
  rprintf("  CH5:"); rprintfu16(a2dData.ch[5].valuefilt>>FIXED_PT_BITS); 
  rprintf("  CH6:"); rprintfu16(a2dData.ch[6].valuefilt>>FIXED_PT_BITS); 
  rprintf("  CH7:"); rprintfu16(a2dData.ch[7].valuefilt>>FIXED_PT_BITS); 
  rprintfCRLF(); 
*/ 
/*  // XYZ raw output 
  rprintf("  CHX0:");
 rprintfu16(a2dData.ch[CHX0].valuefilt>>FIXED_PT_BITS); 
  rprintf("  CHX1:");
 rprintfu16(a2dData.ch[CHX1].valuefilt>>FIXED_PT_BITS); 
  rprintf("  CHY0:");
 rprintfu16(a2dData.ch[CHY0].valuefilt>>FIXED_PT_BITS); 
  rprintf("  CHY1:");
 rprintfu16(a2dData.ch[CHY1].valuefilt>>FIXED_PT_BITS); 
  rprintf("  CHZ0:");
 rprintfu16(a2dData.ch[CHZ0].valuefilt>>FIXED_PT_BITS); 
  rprintf("  CHZ1:");
 rprintfu16(a2dData.ch[CHZ1].valuefilt>>FIXED_PT_BITS); 
  rprintf("  CHC0:");
 rprintfu16(a2dData.ch[CHC0].valuefilt>>FIXED_PT_BITS); 
  rprintf("  CHC1:");
 rprintfu16(a2dData.ch[CHC1].valuefilt>>FIXED_PT_BITS); 
  rprintfCRLF(); 
*/ 
/* 
  // XYZ linear acceleration output 
  rprintf("  X:"); 
  rprintfu16(Accel.X>>FIXED_PT_BITS); 
  rprintf("  Y:"); 
  rprintfu16(Accel.Y>>FIXED_PT_BITS); 
  rprintf("  Z:"); 
  rprintfu16(Accel.Z>>FIXED_PT_BITS); 
  rprintf("  XR:"); 
  rprintfu16(Accel.Xr>>FIXED_PT_BITS); 
  rprintf("  YR:"); 
  rprintfu16(Accel.Yr>>FIXED_PT_BITS); 
  rprintf("  ZR:"); 
  rprintfu16(Accel.Zr>>FIXED_PT_BITS); 
  rprintf("  P%d", i); 
  rprintfCRLF(); 
*/   
/* 
  // bit-processed XYZ linear acceleration output 
  rprintf("  X:"); 
  rprintfu16(x); 
  rprintf("  Y:"); 
  rprintfu16(y); 
  rprintf("  Z:"); 
  rprintfu16(z); 
  rprintf("  P%d", i); 
  rprintfCRLF(); 
*/ 
 } 
} 
 
void sample(void) 
{ 
 u08 i; 
 for(i=0; i<NUM_CH; i++) 
 { 



  // sample sensor 
  a2dData.ch[i].value = a2dConvert10bit(i); 
  // remove offset 
  a2dData.ch[i].value += a2dData.ch[i].offset; 
  // correct scale factor 
  //a2dData.ch[i].value = 
(a2dData.ch[i].value*a2dData.ch[i].scale)>>FIXED_PT_BITS; 
  // do filter 
  a2dData.ch[i].valuefilt = (a2dData.ch[i].valuefilt*(a2dData.filtCoeff-1) + 
(a2dData.ch[i].value<<FIXED_PT_BITS))/a2dData.filtCoeff; 
  // or don't do filter 
  //a2dData.ch[i].valuefilt = a2dData.ch[i].value<<FIXED_PT_BITS; 
 } 
 a2dData.sample++; 
} 

 


	Introduction
	Prior Work
	System

	Musical Mappings
	Chinese Baoding Ball
	Scratching
	Two-Dimensional Visualization and Four Channel Panning

	Implementation
	Ball Transmitter
	Receiver Base

	Conclusions and the Future
	References

