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Abstract Graphs are used to model many real objects such as social networks and web
graphs. Many real applications in various fields require efficient and effective manage-
ment of large-scale, graph-structured data. Although distributed graph engines such as
GBase and Pregel handle billion-scale graphs, users need to be skilled at managing and
tuning a distributed system in a cluster, which is a non-trivial job for ordinary users.
Furthermore, these distributed systems need many machines in a cluster in order to
provide reasonable performance. Several recent works proposed non-distributed graph
processing platforms as complements to distributed platforms. In fact, efficient non-
distributed platforms require less hardware resource and can achieve better energy
efficiency than distributed ones. GraphChi is a representative non-distributed plat-
form that is disk-based and can process billions of edges on CPUs in a single PC.
However, the design drawbacks of GraphChi on I/O and computation model have lim-
ited its parallelism and performance. In this paper, we propose a general, disk-based
graph engine called gGraph to process billion-scale graphs efficiently by utilizing both
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CPUs and GPUs in a single PC. GGraph exploits full parallelism and full overlap of
computation and I/O processing as much as possible. Experiment results show that
gGraph outperforms GraphChi and PowerGraph. In addition, gGraph achieves the best
energy efficiency among all evaluated platforms.

Keywords Graph - Graph algorithm - Graph processing platform - GPU

1 Introduction

In recent years we have witnessed an explosive growth of graph data. For example,
the World Wide Web graph currently has over 4.34 billion pages and one trillion
URLs [18]. Also, the social network of Facebook has over 1,310 million users and
140 billion social links [9]. The volume to store only the topology of such a graph
is beyond TeraBytes (TB), letting alone rich metadata on vertices and edges. Graphs
with billions of vertices resident in memory require hundreds of gigabytes of main
memory, which is only possible in very expensive servers [14].

Processing large-scale real-world graphs has become significantly important for
mining valuable information and learning knowledge in many areas, such as data ana-
Iytics, web search and recommendation systems. The most frequently used algorithmic
kernels, including path exploration (e.g., traversal, shortest paths computation) and
topology-based iteration (e.g., page rank, clustering), are driven by graph structures.
Many scalable systems have been recently proposed to handle big graphs efficiently
by exploiting distributed computing. For example, GBase [20] is a recent graph engine
using MapReduce. It shows that, if the graph is represented as a compressed matrix,
matrix-vector computation solves many representative graph queries including global
queries such as page rank and targeted queries such as induced subgraph and k-step
neighbor queries. However, distributed systems based on MapReduce are generally
slow unless there are sufficient machines in a cluster. For example, GBase used 100
machines to answer a two-step out-neighbor query from a given vertex in the Yahoo
Web graph in about 265 s [20].

To solve the inherent performance problem of MapReduce, many distributed sys-
tems based on the vertex-centric model have been proposed, including Pregel [27],
GraphLab [26], PowerGraph [14] and GPS [33]. In this model, users only need to write
a function for each graph query type, which is invoked for each vertex by underly-
ing systems. However, efficient graph partitioning in a distributed environment for all
types of graph operations is very difficult [24]. Furthermore, users need to be skilled
at managing and tuning a distributed system in a cluster, which is a non-trivial job for
ordinary users. These distributed systems still need many machines in order to provide
good performance.

Recently, several non-distributed graph processing platforms have been proposed
as complements and more energy-efficient and economical alternatives to distributed
graph processing platforms. Ligra [37] is a lightweight graph processing framework
that is specific for shared-memory parallel/multicore machines, which makes graph
traversal algorithms easy to write. It is designed to compute graphs purely in memory,
which requires a large-sized memory in a single PC. GPUs are advantageous in good
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energy efficiency, massive parallelism and high memory access bandwidth [12]. Totem
[13] is a processing engine that provides a convenient environment to implement
graph algorithms on hybrid CPU and GPU platforms. It integrates optimized graph
partitioning strategies as well as other GPU-specific optimizations. Totem utilizes
GPUs for additional computing power and improved energy efficiency. The author
demonstrated that Totem outperformed state-of-the art CPU-based graph-processing
systems in terms of both performance and energy efficiency [12]. However, a common
drawback of Neo4j, Ligra and Totem is that they can not process large-scale graphs
exceeding the PC’s memory capacity.

GraphChi [24] is the first disk-based platform that can process large-scale graphs
on CPUs in a single PC. GraphChi exploits the novel concept of parallel sliding win-
dows (PSW) for handling billion-scale disk-based graphs. Like Pregel [27], GraphChi
also follows the vertex-centric model. Since GraphChi is a disk-based system rather
than a distributed system, message passing through edges is implemented as updating
values to the edges. PSW divides the vertices into P execution intervals, and each
execution interval contains a shard file which stores all edges that have target vertices
in that interval. The edges in each shard file are ordered by their source vertices. PSW
processes one shard file at a time. Processing each shard consists of three separate
sub-steps: (1) loading a subgraph from a disk, and (2) updating the vertices and edges,
and (3) writing the updated parts of the subgraph to the disk. GraphChi can use less
hardware resource to provide comparable performance with representative distributed
disk-based platforms [24].

We observe that GraphChi has several problems. First, it adopts the asynchronous
computation model and enforces race condition detection for data updating, which
limits the parallelism. Second, the PSW method loads both in-edges and out-edges and
processes a shard at a time, which further decreases the parallelism and performance.
Third, the disk I/O is not fully overlapped with the computation; the computation
threads have to stall to wait for data, which degrades the performance. Fourth, it
maintains an edge value vector and uses edges’ value to communicate between vertices,
which incurs large memory footprint. Overall, these issues result in a poor scalability
in terms of the number of threads and a poor utilization in terms of total hardware
resources.

We present a general, disk-based graph processing platform called gGraph which
can process billion-scale graphs very efficiently by exploiting modern hardware in a
single PC. GGraph exploits: (1) full parallelism including flash SSD I/O parallelism,
multi-core CPU parallelism and many-core GPU parallelism and (2) full overlap of
computation and I/O processing as much as possible—data are pre-fetched prior to the
computation. Note that multi-core CPUs and many-core GPUs can process multiple
jobs at the same time, and flash SSDs can process multiple I/O requests in paral-
lel by using the underlying multiple flash memory packages. Our experiments show
that gGraph outperforms GraphChi [24] and PowerGraph [14]. In addition, gGraph
achieves the best energy efficiency among all evaluated platforms.

This work is an exploration on three important aspects of supercomputing: large-
scale graph processing, performance, and energy efficiency. Although distributed com-
puting will be the ultimate choice for processing very large-scale graphs in terms of per-
formance and scalability, we believe that non-distributed platforms (e.g., SSD-based,
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hybrid CPU and GPU graph processing platforms) are valuable complements, instead
of replacements, to distributed graph processing platforms. These non-distributed plat-
forms are eligible candidates for some energy-critical or economy-critical cases in
supercomputing.

Our contributions are as follows: First, we propose a general, I/O efficient and
scalable graph processing platform called gGraph which exploits the parallelism of
multi-core CPUs, many-core GPUs and SSDs. GGraph is the first disk-based, hybrid
CPU and GPU platform for large-scale graph processing on a single PC. Second,
we propose an adaptive load balancing method and a load and store unit for data
prefetching to improve performance. Third, we present a comparative evaluation of
gGraph with three state-of-the-art graph processing platforms, and propose to use
energy efficiency in addition to performance as metrics for a fair comparison.

2 Related work

Previous work has demonstrated the benefit of utilizing GPUs to accelerate graph
processing. Harish et al. [17], Vineet et al. [39], and Merrill et al. [29] implemented
several graph algorithms including Breadth First Search (BFS), parallel Boruvka and
Minimum Spanning Tree(MST) on GPUs and gained various speedups. These past
works assumed that the GPU memory can hold the entire graph. However, even the
high-end GPUs today (e.g., Nvidia K20 series) have only up to 20 GB memory each,
which is far from enough to hold a large-scale graph. For example, a snapshot of
the current Twitter follower network has over 500 million vertices and 100 billion
edges, and requires at least 0.5 TB of memory. Recent work by Gharaibeh et al. [13]
utilizes both the host (CPU) memory and the device (GPU) memory to hold graphs and
partitions workloads between CPUs and GPUs for processing in parallel. Still, the host
memory and device memory of a single machine are inadequate to hold large-scale
graphs. The communication and workload distribution strategies between compute
nodes have been addressed by Arabnia et al. [2,3], and we will investigate this matter
in the context of CPUs and GPUs.

There are numerous algorithms for various types of graph queries, e.g., finding
neighborhoods [28], community detection [22], finding induced subgraphs [1], com-
puting the number of triangles [19], finding connected components [36], computing
subgraph isomorphism [25], and page rank [31]. Most of them are based on an in-
memory computing model that limits their ability to handle large-scale, disk-resident
graphs. Thus, they do not tend to scale well for web-scale graphs with billions of
vertices and edges. To efficiently handle web-scale graphs and reduce the redundant
effort of developing an algorithm for each query, many scalable and high-level graph
systems [14,20,21,26,27,33,34,37] have recently been proposed. They support var-
ious kinds of graph queries instead of a specific graph query and also can handle
web-scale graphs with billions of vertices and edges. They can be classified into dis-
tributed systems and non-distributed systems depending on the number of computing
nodes. Distributed systems can be further categorized into synchronous systems and
asynchronous systems.
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Distributed synchronous systems: PEGASUS [21] and GBase [20] are based on
MapReduce and support matrix-vector multiplication using compressed matrices.
Pregel [27] is not based on MapReduce but on the vertex-centric model where a vertex
kernel is executed in parallel on each vertex. In this model, the user only needs to write
a function for each graph query type, which is invoked for each vertex by the under-
lying system. Pregel follows the Bulk-Synchronous Parallel (BSP) message passing
model in which all vertex kernels run simultaneously in a sequence of super-steps.
Within a super-step, each kernel receives all messages from the previous super-step
and sends them to its neighbors in the next super-step. A barrier is imposed between
super-steps to ensure that all kernels finish processing messages. All synchronous
approaches above could suffer from costly performance penalties since the runtime
of each step is determined by the slowest machine in the cluster. Such an imbalance
in runtime may be caused by a lot of factors including hardware variability, network
imbalances, and power-law degree distributions of natural graphs. GPS [33] is a com-
plete open-source system developed for scalable, fault-tolerant, and easy-to-program
execution of algorithms on extremely large graphs. GPS implements an extended API
to make global computations more easily expressed and more efficient. It includes
a dynamic repartitioning scheme that reassigns vertices to different workers during
the computation based on messaging patterns. In addition, it has an optimization that
distributes adjacency lists of high-degree vertices across all compute nodes to improve
performance.

Distributed asynchronous systems: GraphLab [26] is also based on the vertex-
centric model but a vertex kernel is executed in asynchronous parallel on each ver-
tex. In GraphLab, each vertex reads and writes data on adjacent vertices and edges
through shared-memory instead of messages. Since asynchronous systems update
parameters using the most recent parameter values as input, they can make many
kinds of queries converge faster than synchronous systems do. However, some algo-
rithms based on asynchronous computation require serializability for correctness, and
GraphLab allows a user to choose the level of consistency needed for correctness.
PowerGraph [14] is basically similar to GraphLab, but it partitions and stores graphs
by exploiting the properties of real-world graphs of highly skewed power-law degree
distributions. Even though the above asynchronous approaches have the algorithmic
benefits of converging faster, efficient graph partitioning in a distributed environment
for all types of graph operations is an inherently hard problem [24]. Furthermore, the
user must be skilled at managing and tuning a distributed system in a cluster, which
is a non-trivial job for ordinary users.

Non-distributed systems: Neo4j [30] is one of the popular open-source graph data-
bases. Neo4j stores data in graphs rather than in tables. Every stored graph in Neo4j
consists of relationships and vertices annotated with properties. Neo4j can execute
graph-processing algorithms efficiently on just a single machine, because of its opti-
mization techniques that favor response time. Ligra [37] is a lightweight graph process-
ing framework that is specific for shared-memory parallel/multicore machines, which
makes graph traversal algorithms easy to write. Ligra requires large memory in a
single PC to hold and compute the entire graph in memory, which is infeasible for
large-scale graphs. GraphChi [24] is a disk-based single machine system following
the asynchronous vertex-centric model. GraphChi exploits the novel approach called
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Parallel Sliding Windows (PSW) for handling web-scale disk-based graphs. Since
it is a disk-based system rather than a distributed system, message passing through
edges is implemented as updating values to the edges. PSW divides the vertices into
P execution intervals, and each execution interval contains a shard file which stores
all edges that have the target vertices in that interval. The edges in each shard file
are ordered by their source vertices. PSW processes one shard file at a time. When
processing each shard, there are three separate sub-steps: (1) loading a subgraph from
disk, (2) updating the vertices and edges, and (3) writing the updated parts of the sub-
graph to disk. Even though GraphChi is very efficient, and thus able to significantly
outperform large Hadoop deployments on some graph problems while using only a
single machine, there are still several serious problems which we discussed in Sect. 1.
As a consequence, it results in poor scalability in terms of the number of threads and
poor utilization in terms of total hardware resources.

3 Opportunities and challenges

Large-scale graph processing faces two major difficulties. First, large memory foot-
print: efficient graph processing requires the whole graph to be loaded in memory.
However, large real-world graphs can occupy few gigabytes to terabytes of memory
space. Second, high memory access latency combined with a random memory access
pattern: during graph processing, the value of vertices and edges will be loaded and
stored for one or more times. Because of poor locality and the scale of the work-
load, caches often miss and most accesses are served by the main memory. Therefore,
industries and academia are seeking for solutions in various directions.

The opportunities: While distributed graph processing is the mainstream and can
scale up and provide highest performance, non-distributed platforms have the poten-
tial as complements to achieve better energy efficiency. GPU-accelerated, disk-based
graph processing has the potential to offer a viable solution. Compared to CPUs,
GPUs have much higher parallelism and memory bandwidth. Today’s commodity
GPUs support thousands of hardware threads and in-flight memory requests through
light-weight hardware multi-threading. Besides, the memory access latency on GPUs
can be effectively hid by other active computing threads. In addition, properly parti-
tioning and mapping the algorithmic computing tasks between the CPUs and GPUs
holds the promise to utilize both computing resources best: CPUs are optimized for
latency while GPUs are optimized for throughput. Therefore we could offload many
light computing tasks onto GPUs while keeping a few computing intensive tasks on
CPUs.

The challenges: Large-scale graph processing poses several major challenges to
hybrid CPU and GPU systems. First, the scale of large-scale graphs exceeds the overall
system memory resource (on the host and the device). This motivates us to design
systems using hard disks as secondary storage for graphs, and efficient data loading
mechanism to improve performance. Experiments show that the runtime of the graph
algorithms on GraphChi is dominated by the I/O time [24]. Therefore we need to
explore better designs to reduce the impact of I/O on performance. Second, to achieve
good performance on hybrid CPU and GPU systems, we need to balance their workload
and improve their utilization. Finally, mapping high-level abstractions and APIs to
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facilitate application development to the low level engine while limiting the efficiency
loss, is an additional challenge.

4 Overview of graph processing on hybrid CPU and GPU systems

In this section, we give a brief overview on graphs, graph algorithms, the computation
model of graph processing, the programming model for hybrid CPU and GPU systems
and the characteristics of SSD I/0.

4.1 Graph algorithms

We distinguish between two main graph algorithm classes: traversal algorithms and
analytical iterative algorithms.

Traversal algorithms involve iterating through vertices of the graph in a graph
dependent ordering. Vertices can be traversed one time or multiple times. This class
includes search algorithms (such as breadth-first search, depth-first search), single
source shortest paths, minimum spanning tree algorithm, connectivity algorithms and
SO on.

Analytically iterative algorithms involve iterating over the entire graph multiple
times until a convergence condition is reached. This class of algorithms can be effi-
ciently implemented using the Bulk Synchronous Parallel (BSP) model. Algorithms
in this class include page rank, connected components, community detection, triangle
counting and so on.

We focus on this two classes of graph algorithms. Parallel implementations of these
algorithms typically require some form of graph partition, concurrency control, and
thread-level optimizations for optimal performance.

4.2 Graph representation

GGraph processes graphs stored in the Compressed Sparse Row (CSR) format. The
CSR format is aimed at efficient storage of sparse matrices. In our case we use it to
store the sparse adjacency matrix of the graph (Ag). This format is widely used in
many graph processing systems such as Totem [13] and the work of Pearce et al. [32].
The basic principles of our system could be applied to systems using other storage
formats; however, we chose CSR for the sake of comparability. The CSR format
consists of two components: the row index and the column index. The row index of
Ag is a vector R of size |V| with Rg[i] being the index of the first non-zero element
of row i in the column index. The column index of Ag is a vector Cg of size |E|
which is a row-wise listing of the column numbers of those elements in Ag, which
are non-zero. Depending on the specific algorithm’s needs, an additional O (V) vector
may be allocated to store the vertices’ value (e.g., the rank in page rank algorithm).
In graphChi [24], it always loads an O (E) sized edge value vector in memory and
stores it on disk after updating. In addition, graphChi uses the edge value to communi-
cate between vertices implicitly. This significantly enlarges memory footprint as well
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as the I/O cost. However, many algorithms such as BFS, page rank and connected
component do not reply on edge weight. Therefore, our system uses an edge value
vector only if an algorithm needs edge value/weight for computing.

During the computation in our system, the O (V) sized row index Rg will be fully
loaded into the host memory while only a portion of the column index will be loaded
into the host memory at a time.

4.3 Computation model

Our system adopts the vertex-centric model of computation, as introduced by Pregel
[27]. A problem is encoded as a directed graph, G = (V, E). We associate a value
with each vertex v € V and each edge e = (source, destination) € E. To perform
computation of an algorithm, a programmer specifies an update-function. The update-
function is executed for each of the vertices, iteratively, until a termination condition
is satisfied [24].

There are two widely used model to execute the update function: the Bulk-
Synchronous Parallel (BSP) [38] model and the asynchronous model. The BSP model
is adopted by Totem [13], Giraph [4], GPS [33] and many more graph processing plat-
forms. On the other hand, graphChi [24] and graphLab [26] utilize the asynchronous
model.

The asynchronous model is designed for fast convergence of algorithms instead of
massive parallelism. In fact, it enforces race condition detection for value updating
and a sequential order to load graph partitions from disk, which significantly reduces
the parallelism. Therefore, our system adopts the BSP model.

With the BSP model, parallel systems execute the update function in lock-step, and
synchronize after each iteration. BSP model is simpler to implement and has good par-
allelism. Our system adopts the (BSP) computation model and divides processing into
rounds (super-steps in the BSP terminology). Each super-step consists of three phases
executed in order: computation, communication and synchronization. In the compu-
tation phase, each processor (in our case a CPU or a GPU) executes computations
asynchronously based on values stored in their local memories. In the communication
phase, the processors exchange messages that are necessary to update their statuses
before the next computation phase. The synchronization phase guarantees the deliv-
ery of the messages. Specifically, a message sent at super-step i is guaranteed to be
available in the local memory of the destination processor at super-step i + 1.

Adopting the BSP model allows to circumvent the fact that the GPUs are connected
via the high-latency PCI-Express bus. In particular, batch communication matches well
BSP, and this enables our system to hide (some of) the bus latency. In addition, using
the BSP model and a double buffer mechanism guarantees that the output of algorithms
is deterministic regardless of the order of processing graph partitions.

4.4 Programming model
In gGraph, OpenMP and CUDA programming models are adopted to create and man-

age the CPU threads and GPU threads, respectively. We chose them primarily for better
performance. Alternatively, OpenCL can be used to implement both the CPU kernels
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and GPU kernels. OpenCL has been proposed to tackle multi-/many-core diversity in
a unified way. However, it is not fully mature. Work [35] reported the performance
degradation incurred by immature OpenCL compilers. In addition, there seems to be
a trade-off between its unified way and performance. Previous work [10] showed that
the CUDA version of GPU kernels outperformed the OpenCL version. Other work
[11,35] reported that the OpenMP version of CPU kernels achieved better performance
than the OpenCL version. After manually optimizing codes, CPU kernels in OpenCL
can reach similar performance with those in OpenMP [35]. In summary, OpenCL can
be good alternatives to CUDA and OpenMP in the future.

There are several differences between OpenMP and OpenCL CPU kernels. First,
OpenCL is advantageous for its good portability; there are only slightly differences
between kernels implemented in OpenCL for different processors (e.g., CPUs and
GPUs). Second, OpenMP provides locality-friendly coarse-grained parallelism while
OpenCL provides fine-grained parallelism [35]. In OpenMP, each thread processes
consecutive data elements. In OpenCL, one work-item processes one data element.
Improper implementation of the fine-grained parallelism method in OpenCL can lead
to poor CPU cache utilization. Third, depending on the version of OpenCL and
OpenMP, they may handle the divergent data-dependent branches differently: OpenMP
using the hardware branch prediction to choose a path to execute and OpenCL exe-
cuting all branch paths.

In gGraph, the GPU threads are allocated based on the amount of data, as the
applications in CUDA SDK do. There is no bank conflict problem since the GPU
kernels use no shared memory. The allocation of GPU threads has negligible impact
on memory access performance since the memory access patterns of many graph
algorithms on GPUs are known to be irregular and unpredictable [8].

4.5 SSD I/O characteristics

Unlike rotational Hard Disk Drive (HDD), Solid State Drive (SSD) can serve multiple
random access requests in parallel without suffering degradation in the latency of
servicing an individual request. Therefore they are adopted as a better alternative to
HDD in graph processing platforms [24]. The number of requests that can be handled
concurrently is referred to as the queue depth in literature. In our system, we design
an efficient load and store manager that can access multiple trunk of the graph data
concurrently through multiple threads, and a mechanism to identify future vertices
and retrieve the associated data from the SSD ahead of time.

5 Architecture of gGraph platform

Figure 1 shows the architecture of gGraph and the underlying hardware. GGraph con-
sists of three layers. The top layer is the main controller of the platform that initializes
and terminates the algorithms, and performs computation using the supporting func-
tional modules. There are four functional modules in the middle layer: load and store
unit, graph partitioner, message handler and memory manager. At the bottom layer
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Graph algorithms

Main controller

L
:t?)dre& Graph Message Memory
unit parititioner handler manager
OpenMP & CUDA threads
SSD Host CPU GPU Device
memory array array memory
Fig. 1 Architecture diagram of gGraph platform
SSD
Partition
| Block 0 | | Block 0 | | Block 0 | table
| Block 1 | | Block 1 | | Block 1 |
| Block2 || | Block2 | | Block 2 |
Partition 0 Partition 1 Partition 2

Fig. 2 Graph storage on the SSD

are the concurrent threads created by OpenMP and CUDA. Next we will elaborate the
design and implementation details of the platform.

5.1 Graph storage

In this work, we consider large-scale graphs that can not fit into the host memory.
In real-world graphs, the number of edges is often much larger than the number of
vertices [13]. Therefore, we store the row index of the entire graph in a separate file
and the column index of the entire graphs in P partitions to improve the bandwidth and
latency to access the graph data on the SSD, as shown in Fig. 2. The P is determined
such that each partition can fit into the host memory. Both the partition size and the
block size are configurable in the platform configuration file. There is a partition table
file that stores the mapping from each vertex to a (partition_id, block_id) pair.

5.2 Load and store unit
The Load and store unit (LSU) is in charge of the accesses to the SSD, whose archi-

tecture is shown in Fig. 3. Prior to the computation, LSU threads prefetch the vertices
within the current loading window and their edges in CSR format from the SSD into
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memory. We call the vertices and their edges as a subgraph since it is only a portion
of the entire graph that fits into the host memory.

The current loading window is a set of vertices {v;} determined by the current
progress and the data access pattern of the specific algorithm. There are two major
type of access patterns: the random access pattern and the sequential access pattern.

e Random access pattern: traversal algorithms generally follow the random access
pattern. The vertices to access (called frontier in literature [29]) in the next super-
step of the BSP model are determined in the current super-step and maintained in
a First In First Out (FIFO) queue in gGraph.

e Sequential access pattern: analytically iterative algorithms are generally in this
pattern. The vertices to access in the next super-step are just the N vertices following
the current loading window.

During the computing process, the loading window will be continuously updated. The
updates will trigger a callback function which wakes up the LSU threads to make
the prefetching. Therefore, the computation of super-step i is overlapped with the
subgraph loading for super-step i + 1. The prefetched subgraph is put into a circular
CSR buffer in the host memory. The circular CSR buffer has at least two buffers, one in
use and another on hold. The buffer in use contains the subgraph for the computation
of the current super-step, while the buffer on hold is used to store the subgraph for the
next super-step.

In this paper, we do not consider dynamic graphs that evolve over time. In other
words, the structures of graphs remain constant. Therefore, LSU loads but never stores
the graph structure data. If there are interim results (e.g., the rank in page rank algo-
rithm) or vertices’ value to be saved onto the SSD, they are put into a state buffer by
the computing threads and then stored onto the SSD by the LSU.

5.3 Graph partitioner

The graph partitioner distributes the computation workload among CPUs and GPUs
and makes adjustment if necessary. Due to limited memory, gGraph only loads and
computes a subgraph in memory at a time. For a system with M CPUs and N discrete
GPUs, a subgraph will be cut into N + 1 sections, one section for all CPUs and one
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Fig. 4 An illustration of the adaptive load balancing method

section for each of the GPUs, respectively. The reason is that all CPUs share the
same host memory and are homogeneous threads from the OpenMP’s view, while
each discrete GPU has its own device memory. Note that the processing power and
memory capacity of GPUs can be different.

The graph partitioner cuts the subgraph in an effort such that the sections are
proportional to the processing power of CPUs and GPUs and can fit into corresponding
CPUs’ or GPUs’ memory. As shown in Fig. 4a, since the computation time of each
super-step is determined by the slowest processor, load imbalance will prolong overall
algorithm runtime. A static partition scheme can not guarantee optimal performance.
We propose an analytical model-based method to adaptively balance the load among
CPUs and GPUs at runtime.

we assume a heterogeneous platform P that consists of two processing elements
P = {pcpu, Pacc}, the CPU and an accelerator (e.g., a GPU). The model can be easily
generalized to a mix of multiple CPUs and accelerators.

Let G = (V, E) be a sub-graph, where V is the set of vertices and E is the set of
edges. |V | and | E| represent the number of vertices and edges, respectively. The time
it takes to process a section of G, G, = (V,, E;) € G on a processing element p, is
given by:

1(Gp) = £yl ey
P R,
where R, is the processing rate of processor p in Edges per second (E/s). Here we
ignore the communication time since it is relatively small with the message aggregation
mechanism introduced in Sect. 5.4.
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We define the completion time of a subgraph G on a given platform P as follows:
T(G) =max{t(Gp)}, peP 2)

For a system with a CPU and a GPU, the T'(G) can be expressed as:

T (G) = max{t(Gepu), 1 (Ggpu)} (3)
|Ecpu| |Egpu| ]

T(G) = max [ , 4)
chu Rgpu

We define a CPU loading ratio o = "2 50 | Egpu| = (1 — )| E. So we get:

RCle ’ Rgpl.l
The parameters in Eq. (5) are unknown prior to the first execution. Depending on the
specific hardware, Rcpy could be larger or smaller than Rgpy. o determines where to
cut a sub-graph and consequently determines | E¢cpy| and | Egpy|. So it is paramount to
find an optimal « that minimizes 7 (G).

Our system adopts the following method to find an optimal value for o:

o Before the first iteration, initializes , Repy and Rgpy to 0.

o At the beginning of each iteration, if there are valid Rcpy and Rgpy (Repy # 0 and
Rgpu # 0), find the optimal o that minimizes 7' (G) in Eq. (5) which does not violate
the capacity of the host and the device memory. Otherwise adopts the minimum «
that does not violate the capacity of the host and the device memory.

o At the end of each iteration, calculates and updates Repy and Rgpy.

In practice, it may be better to derive the optimal o after the second iteration since
some algorithms use the first iteration to assign initial value to vertices and edges. The
real computation starts from the second iteration.

5.4 Message handler

The message handler maintains the message buffers and performs message aggrega-
tion. Since gGraph partitions a graph into subgraphs then sections, there are some
boundary edges whose one end-vertex (called local vertex) is within a section while
the other end-vertex (called remote neighbor) is not. So messages are sent via these
boundary edges to remote neighbors to notify the value changes of vertices. The mes-
sages are temporarily buffered in the computation phase and then transferred in the
communication phase.

The message handler maintains two buffers for each processing unit: an outbox
buffer and an inbox buffer. For the same reason discussed in Sect. 5.3, each GPU has
its own inbox and outbox while all CPUs share an inbox and an outbox. The outbox
buffers have an entry for each remote neighbor, while the inbox buffers have an entry
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Raw messages Operators Aggregated messages
Vertex id value Operators Vertex id value
5 0.15 + 5 0.45
5 0.25 - 9
5 0.05 Set_true
9 Set_false

(a) Raw messages and operators (b) Aggregated messages

Fig. 5 An example of message aggregation

for each local vertex that is remote to another partition. An inbox or outbox buffer is
composed of two arrays: one contains the vertex ID and the other stores the messages.

We enforce message aggregation to reduce the communication cost. In each process-
ing unit, messages to a same destination vertex (from different source vertices) are
aggregated into one message. Figure 5 presents an example for message aggregation.
Figure 5a shows some raw messages as well as the operators. The choosing of the oper-
ator depends on the specific algorithm. For example, page rank takes the weighted sum
of neighbouring vertices as the new value of a vertex, so the operator for this algorithm
is plus. Figure 5b shows the aggregated messages with the plus operator. This opti-
mization is based on the observation that real-world graphs exhibit power-law degree
distribution [6], so vertices have lots of in-edges and out-edges.

5.5 Memory manager

Like GraphChi and PowerGraph, gGraph uses OpenMP only for threads management.
The memory used in gGraph is managed by the memory manager module. The mem-
ory manager allocates, deallocates and recycles the memory used by the platform.
It ensures that the memory allocated by the consumers in gGraph does not exceed a
pre-configured limit. The graph data are stored in the host DDR memory and the GPU
DDR memory, and accessed by the CPU/OpenMP threads and GPU/CUDA threads,
respectively. Comparing with the host DDR memory, the GPU DDR memory is small
in capacity but with much bigger bandwidth shared by many threads. There are several
main memory consumers:

e Circular CSR buffer: an O (E) buffer to store the CSR of subgraphs.

e State buffer: an O (V) and sometimes O (E) buffer that stores the interim algorith-
mic output data (e.g., rank in page rank algorithm or vertices’ value). If algorithms
need edges’ weight for computing, the state buffer takes O (E).

e Loading window: an O (V) memory space to track the set of vertices (and their
edges) to be loaded for the next super-step.

e Miscellaneous buffer: other small or temporary buffers such as the partition mapping
table, the temporary buffer for I/O and so on.
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Besides, the memory manager also handles the memory transfer between the host
memory and the device memory. GGraph utilizes asynchronous memory copy to over-
lap the computation and memory transfer and applies some techniques to improve the
performance of memory accesses on GPUs, including using the pinned memory, con-
figuring the L1 cache to be 48 KB (maximum size allowed) in the 64 KB configurable
memory and implementing GPU kernels to create coalesced memory accesses as many
as possible.

6 Evaluation methodology
6.1 Graph algorithms

We select three graph algorithms for evaluation: connected component (CONN)), single
source shortest path (SSSP) and page rank (PR). This suite of algorithms has different
per-vertex computation and communication intensity (based on the categorization in
[33]) which can better evaluate the performance of the graph processing platforms. In
addition, these algorithms have rich applications in social networks, recommendation
systems, routing algorithms and other physical or biological simulations. Therefore,
these algorithms are frequently adopted in performance evaluations. The characteris-
tics of the algorithms are summarized in Table 1 and described as follows.

Connected component (CONN) is used to detect regions in graphs. A region or a
connected component is a subset of vertices that can reach each other through edges.
A vertex only belongs to a single connected component of the graph. This algorithm
is crucial in many operations such as graph partition. Our implementation is based on
the HCC algorithm implemented in PEGASUS [21]. Connected component has also
been used to demonstrate GPS [33], CGMgraph [7], PBGL [16] and GraphChi [24].

Single source shortest path (SSSP) finds the shortest path from a single source
vertex to all connected vertices, producing a shortest path tree. It is a well-known and
long-studied problem with many practical applications. Our implementation is based
on the SSSP algorithm implemented in Pregel [27]. Single source shortest path has
also been used to demonstrate GPS [33] and PBGL [16].

Page rank (PR) is an algorithm used by Google to calculate probability distribution
representing the likelihood that a person randomly clicking on links arrives at any
particular page [31]. This algorithm works by counting the number and weight of edges
to each vertex iteratively to determine a rough estimate of how important each vertex
is. The underlying assumption is that more important vertices are likely to receive
more weighted in-edges from other vertices. Given the large number of web pages
on the World Wide Web, efficient computation of page rank becomes a challenging

Table 1 Graph algorithms

Abbr. Algorithm Computation Communication
CONN Connected component Low Medium

SSSP Single source shortest path Medium Medium

PR Page rank Low High

@ Springer



1578 T. Zhang et al.

problem. In the evaluation, we run page rank for six iterations on each graph. Our
implementation is based on the page rank algorithm implemented in Pregel [27]. Page
rank has also been used to demonstrate GPS [33], Trinity [34], PEGASUS [21] and
GraphChi [24].

6.2 Software and experiment configuration

We use three platforms GraphChi (version 0.2.1) [33], PowerGraph (version 2.2) [14]
and GPS (version 1.0, rev.112) [33] to compare with gGraph. GraphChi and gGraph
are non-distributed platforms running on a single-PC while PowerGraph and GPS
are distributed platforms running on a cluster of PCs. The platforms evaluated have
many configuration parameters that can potentially change their performance. We use
common best-practices for tuning each of the platforms and configure all platforms
to utilize all cores in multi-core CPUs. We run each algorithm with default parameter
values on all platforms. Page rank will be executed for six iterations while connected
components and single source shortest path will run to their completion. For single
source shortest path, we use a pre-determined vertex (e.g., vertex 0) as the source
vertex in each graph. We repeat each experiment ten times and report the average
results.

6.3 Hardware platform

We use a single server computer for evaluating the performance of gGraph and
graphChi [24]. The server is equipped with two Intel Xeon 2650 CPUs, each hav-
ing eight cores at 2.0 GHz and a 20 MB cache. It has 64 GB DDR memory and a
single 512 GB Samsung 830 SSD with around 250 MB/s read or write throughput. In
addition, there are two Nvidia Tesla C2075 GPUs installed in the server. Each GPU
has 14 Streaming Multiprocessors (SMs) clocked at 1.14 GHz with 2MB shared L2
cache, 6 GB DDR memory at 144 GB/s bandwidth. On one hand, GPUs have sig-
nificantly larger number of hardware threads, higher memory access bandwidth, and
support a larger number of in-flight memory requests. On the other hand, the CPU
cores are clocked at around double the frequency, and have access to several times
larger memory and cache.

Besides, we use a cluster of six workstation computers to evaluate powerGraph
[14] and GPS [33] for comparison. Each workstation has two sockets, each containing
an Intel Xeon E5-4603 CPU with quad-core at 2.0 GHz and 10 MB cache. There are
24 GB DDR memory and a 1 TB SATA hard disk in each computer. The worksta-
tion computers are connected by a 1 Gbit/s Ethernet network. Both the server and
workstation computers are running Linux platform with version 3.1 kernel.

6.4 Workloads

We use both publicly available real-world graphs and synthetic Recursive MATrix
(RMAT) [6] graphs to evaluate our system. The RMAT graphs are generated with the
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Table 2 Summary of the workloads

Abbr. Graph | Vertices| |Edges| Direction Type

Gl Twitter 2010 [23] 61.6 M 1.5B Undirected Social
G2 Com-Friendster [40] 65.6 M 1.8B Undirected Social
G3 Uk-2007-d [5] 106.0 M 37B Directed Web

G4 RMAT29 [15] 512.0M 8.0B Undirected Synthetic
G5 RMAT30 [15] 1.0B 16.0 B Undirected Synthetic

M million, B billion

parameters (A, B, C) = (0.57,0.19, 0.19) and an average degree of 16. The graphs
are listed in Table 2.

6.5 Evaluation metrics

We evaluate the platforms with two metrics: performance and energy efficiency.

e Performance: the traversed edges per second (TEPS) is used as the performance
metric. TEPS is proposed by the graph500 benchmark [15] to report the throughput
of super-computers on graph processing.

e Energy efficiency: the efficiency in terms of energy expressed as traversed edges
per joule. Since platforms use various hardware resource and consume differ-
ent power, we divide their performance (in TEPS) by their power to get the
energy efficiency for a fair comparison. Energy efficiency is one of the hottest
research topics for energy-critical cases such as datacenter operations. There are
bunches of architectural or software work focusing on improving system energy
efficiency.

7 Results and analysis

In this section, we evaluate the performance of gGraph and compare it with GraphChi,
PowerGraph and GPS. GraphChi and gGraph run on the single server computer but
only gGraph utilizes the GPUs on it. PowerGraph and GPS run on a six-PC cluster.
We first evaluate the effectiveness of the adaptive load balancing method of the graph
partitioner. Then we investigate the scalability of gGraph by varying the hardware
configurations and measuring the corresponding performance. To observe the perfor-
mance of platforms under various conditions, we run three algorithms in all platforms
on different graphs and observe the performance. Finally, since the four platforms
utilize different hardware resource, we divide their performance by their power to
get the energy efficiency for a fair comparison. The results shown in figures are the
average results of ten runs. Performance across multiple runs varies by only a very
small margin.
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Fig. 6 Evaluation of the adaptive load balancing method

7.1 Evaluation of the adaptive load balancing method

Figure 6 shows the performance of the adaptive load balancing method. There are three
bars for each graph. The “oracle” bar represents the performance under the optimal
o, which can be found by exhaustive searches. The “adaptive” bar is the normalized
performance with the adaptive load balancing method. Comparing with the “oracle”,
the “adaptive” has around 13 % performance degradation because it spends one or
two un-optimized iterations to find out an optimal « to balance the load between
CPUs and GPUs. The “static” bar represents the condition that the system uses the
default static « in the entire application lifetime. The result shows that the performance
with a static « is 14 % on average worse than the performance with the adaptive load
balancing method. In summary, the adaptive load balancing method can provide better
performance than using a static «.

7.2 Evaluation of the scalability

Figure 7 presents the performance of running page rank in gGraph with different hard-
ware configurations including: one CPU, one GPU, two CPUs, one CPU and one GPU,
two GPUs, two CPUs and one GPU, and two CPUs and two GPUs. The performance
is expressed as million traversed edges per second (MTEPS). In the configurations of
one GPU or two GPUs, each graph is processed by the GPU(s) in multiple partitions
since the capacity of the GPU device memory is inadequate to hold the entire graph.
On all three graphs, the performance increases proportionally with the growing of the

@ Springer



Efficient graph computation on hybrid CPU and GPU systems 1581

160 - 1CE_J16J2C [ ]1C1G

=126 [Z7]2c1G6 2C2G

140

120

100

80 7

60

40

20

Million travsered edges per second (MTEPS)

' : '
G2 G3 G4
Graphs

Fig. 7 Performance with different hardware configurations and graphs

hardware’s computing power (e.g., adding one processing unit or replacing a CPU
with a GPU). In addition, gGraph does not show significant performance degradation
when the size of graphs increases from G2 (1.8 billion edges) to G3 (3.7 billion edges),
and finally to G4 (8 billion edges). In summary, the experiments manifest the good
scalability of gGraph in utilizing more hardware resources and in processing larger
graphs.

7.3 Performance on different graphs

Figure 8 compares the performance of all platforms when running page rank on various
graphs. Four platforms achieve different performance because they have different
designs and use different hardware. As described in Sect. 6.3, GraphChi uses the two
CPUs and gGraph uses the two CPUs and two GPUs in the server. PowerGraph and
GPS use the twelve CPUs in the cluster.

GGraph outperforms GraphChi and PowerGraph. On average, gGraph achieves
5.11x and 1.23x performance of GraphChi and PowerGraph, respectively. GPS
obtains the best performance among all platforms because of its good design that
enables the effective utilization of the resources in the cluster. We can also compare
the performance of GraphChi and gGraph on the same hardware by combining Figs. 7
and 8. Figure 8 and the “2C” bar in Fig. 7 show that the average performance of
GraphChi and gGraph for graphs G2, G3 and G4 on two GPUs is 27.78 MTEPS
and 44.66 MTEPS, respectively. Therefore, with the same hardware, gGraph achieves
on average 1.61x performance of GraphChi. If given two more GPUs, gGraph can
achieve larger performance improvement over GraphChi.
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Fig. 8 Performance comparison on different graphs

GGraph outperforms GraphChi and PowerGraph for several reasons. First, gGraph
can utilize the processor cores more effectively than GraphChi and PowerGraph.
GGraph enables full parallelism by adopting the BSP model and proposing the adap-
tive load balancing method to remove the performance degradation in the BSP model
due to imbalanced load among heterogeneous processing units (i.e. CPUs and GPUs).
In contrast, the parallelism of GraphChi and PowerGraph is limited since they employ
the asynchronous model and enforce race condition detection for concurrent data
updating. Second, gGraph utilizes the partition-block layout of data storage and the
load and store unit for efficient data prefetching such that the computation and I/O
can be overlapped as much as possible. Third, the GPUs used in gGraph can provide
additional computational power in addition to CPUs.

7.4 Performance of different algorithms

Figure 9 compares the performance of all platforms running three algorithms. The
result is the average performance on all graphs. Connected component and page rank
are graph analysis algorithms while single source shortest path is a graph traversal
algorithm. The three algorithms have different criteria to terminate. Page rank will run
for a user-specified number of iterations (six iterations in our experiments) then finish.
Connected component will stop executing when all connected components are found.
The termination criteria for single source shortest path is that the shortest paths from
the source vertex to all reachable vertices are found.

In general, platforms achieve better performance in connected component and page
rank than in single source shortest path. GraphChi achieves a poor performance in sin-
gle source shortest path algorithm, since its asynchronous computation model makes
it very inefficient in implementing graph traversal algorithms such as BFS and single
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Fig. 10 Energy efficiency of all platforms
source shortest path. GPS and gGraph achieve the best and the second best performance
among all platforms, respectively. The good performance of GPS comes from its opti-

mizations over Pregel, including a more efficient global synchronization mechanism,
better graph partitioning and repartitioning schemes and so on.

7.5 Energy efficiency
Figure 10 compares the energy efficiency of four platforms expressed as thousand

traversed edges per joule. As defined in Sect. 6.5, the energy efficiency is calculated as
the performance (in traversed edges per second) divided by the average power. We try
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to use the energy efficiency as a normalized/fair comparison since different platforms
use different number of CPUs and GPUs and consume different power. The average
measured power of a workstation is 358 W. And the average power of the server is
411 W without GPUs and 671 W with two GPUs running, respectively. The results in
the figure are the average of three algorithms on all graphs. The energy efficiency of
GraphChi, gGraph, PowerGraph and GPS is 53.87, 165.34, 41.86 and 79.91, respec-
tively. As a non-distributed, hybrid CPU and GPU system, gGraph shows the best
energy efficiency because it achieves good performance with limited hardware. The
ability to utilize energy-efficient GPUs also improves its energy efficiency. Another
non-distributed platform, GraphChi, also achieves comparable or even better perfor-
mance than distributed platforms. This manifests the advantage of non-distributed
system on energy efficiency.

8 Conclusion

This paper introduces a general, disk-based graph processing platform called gGraph
which can process billion-scale graphs very efficiently by using both CPUs and GPUs
on a single PC. GGraph exploits full parallelism and full overlap of CPU and GPU
processing and I/O processing as much as possible—data are pre-fetched prior to the
computation. Our experiments show that gGraph outperforms GraphChi and Power-
Graph in terms of performance. In addition, gGraph achieves the best energy effi-
ciency among all evaluated platforms. The evaluation results manifest that, while
distributed platforms can scale up and provide highest performance, we believe that
non-distributed platforms (e.g., SSD-based, hybrid CPU and GPU graph processing
platforms) are valuable complements, instead of replacements, to distributed graph
processing platforms. These non-distributed platforms are eligible candidates for some
energy-critical or economy-critical cases in supercomputing.

Although gGraph is designed for non-distributed computing, some of the techniques
in this paper also apply to distributed, hybrid CPU and GPU systems. In the future, we
plan to extend gGraph and the techniques to process large-scale graphs in the cloud
environment.
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