Resolving Conflicting Linguistic and Musical Cues in the Perception of Metric Accentuation in Song

Analysis on the Korean Translation of *Happy Birthday to You*

Jieun Oh
Center for Computer Research in Music and Acoustics
Stanford University
On the interplay of accentuation in language and in music

lyrics (text) vs. melody (tune)

From Dell and Halle (2005)
Typical resolution of conflict: Tune > Text

 Pitch information for Chinese

 Rhythmic information for Estonian
Atypical resolution of conflict: Text > Tune

(1) Original lyrics
(2) mismatched (no subjects)
(3) Most common resolution

- Korean translation of “Happy Birthday”
“Happy Birthday to You”: English vs. Korean

Phrases 1, 2, 4: HAP-py BIRTH-day to YOU
Phrase 3: HAP-py BIRTH-day dear SA-RAH

Phrases 1, 2, 4: SENG-il CHU-kah HAP-ni-da
Phrase 3: SA-rang HA-neun JI-EUN-e-eui
Experiment:
Syllabic Intensity Tracking through Finger Tapping

Objective

finger tapping while singing → perceived intensity contour of syllables → Anacrusis/ downbeat perception

Equipment & Setup

acoustic drum trigger → MOTU audio interface → Computer running Audacity → Praat for analysis
Subjects

12 Native English speakers with no knowledge of Korean (Group I)

18 Korean-English bilinguals (Group II)

Complete fluency in English

Complete fluency in Korean

Group I (n=12) Group II_1 (n=5) Group II_2 (n=5) Group II_3 (n=6) Group II_4 (n=2)
Hypothesis

Perceive Anacrusis

Downbeat

(1) ACROSS-GROUP singing in English

Native English Speaker Native Korean Speaker
(Offline effects)

(2) WITHIN-SUBJECT by a Kor-Eng bilingual

Sing in English Sing in Korean
(Online effects)
Task

Part 1: Short Questionnaire

Part 2: Perform in subject’s primary language (Group I & II)

[1] sing (“la”)
[2] sing (“la”) + tap
[3] recite (actual lyrics)
[4] sing (actual lyrics)
[5] sing (actual lyrics) + tap

Part 3: Perform in subject’s secondary language (Group II only)

Identical to Part 2, except with secondary language

Part 4: Final Survey
Summary of Analysis Procedure

1. Record 5 trials per subject-language
2. Match tap intensity peaks to the syllables in the text
3. Calculate the change in intensity (as ratio) between consecutive syllables:

\[
\text{Ratio}_A = \frac{\text{"py"}}{\text{"hap"}} = \frac{\text{"birth"}}{\text{"hap"}}
\]

\[
\text{Ratio}_B = \frac{\text{"ni"}}{\text{"hap"}} = \frac{\text{"da"}}{\text{"hap"}}
\]

4. Determine \textbf{Ratio}_A and \textbf{Ratio}_B
Result: Across Group comparison over Pattern A

All Subjects (sing in English): RatioA = "birth"/"hap"

Intensity Ratio (n=20 per subject)

All Subjects (n=30)
Result: Within-Subject comparison over Pattern B

Within-Subject Comparison of RatioB ("you"/"to")

Sing in English
Sing in Korean

Group II Subjects (n= 5+5+6+2= 18)
Conclusion

(1) ACROSS-GROUP data over Pattern A:

Native English Speaker Native Korean Speaker

(2) WITHIN-SUBJECT data over Pattern B:

Sing in English Sing in Korean
1. **online effects** of lyrics on metric perception of songs

2. **offline effects** of L1 when singing in L2

3. **language fluency** may affect the extent to which linguistic stress patterns play a role in the overall beat-strength perception of songs.

Language can play a significant role in the inference of beat accentuation (and by extension, the metric perception) of songs.
Thank you

- **Acknowledgment**
 - Jonathan Berger (thesis advisor)
 Professor of Music, Stanford University
 - Lera Boroditsky (second reader)
 Professor of Psychology, Stanford University

- **Research Funding**
 - Major Grant, awarded by the Stanford University Undergraduate Research Program
Selected References

