
JACKTRIP: UNDER THE HOOD OF AN ENGINE FOR NETWORK AUDIO

Juan-Pablo Ćaceres & Chris Chafe

Center for Computer Research in Music and Acoustics (CCRMA)
Stanford University

{jcaceres,cc}@ccrma.stanford.edu

ABSTRACT

The design of a platform for bi-directional musical perfor-
mance using modern WAN networks poses several chal-
lenges that are different from related applications, e.g.,
synchronous LAN studio systems or uni-directional WAN
streaming. The need to minimize as much as possible audio
latency and also maximize audio quality requires specific
strategies which are informed, in part, by musical decisions.

We present some of the key design elements of the Jack-
Trip application which has evolved through several years of
deployment in musical work over wide-area networks.

1. INTRODUCTION

The SoundWIRE group at CCRMA1 focuses on experi-
ments with bi-directional musical performance. Concerts
and rehearsals between Stanford and places like New York,
Belfast, Banff, Beijing, or Santiago are now routine.

JackTrip is the application which powers up these on-
line collaborations. Presently, it’s a Linux and Mac OS X-
based system which supports multi-machine network per-
formance over best-effort Internet. The technology being
used builds on early work by research groups at McGill Uni-
versity [11] and Stanford University [7]. The basic approach
is to send uncompressed audio (avoiding the latency intro-
duced by compression encode/decode algorithms) through
high-speed links likeInternet2. It supports any number of
channels (as many as the computers or network paths can
handle). Since best-effort network protocols are used, ade-
quate network provisioning is a must.

The subject of this article is JackTrip’s design relating
to several issues that come up in implementing such a sys-
tem. It is hoped that these solutions can serve as a point-of-
departure for further applications in this same area.

The design achieves (i) the highest audio quality possi-
ble, by using uncompressed linear sampling and redundancy
to recover from packet loss; (ii) throughput maximization,
which gets audio packets onto and off of the network as soon
as the sound card can deliver them; (iii) working with any

1http://ccrma.stanford.edu/groups/soundwire/.

number of channels (depending on available computer pro-
cessing power and bandwidth); (iv) flexibility in routing and
mixing audio channels from and to the different hosts.

1.1. Peer-to-peer Network Audio Latency

WAN connections inevitably introduce transmission delays
between two or more hosts. For non-interactive and “soft”
real-time applications, this delay is less of a problem than
for high-quality collaborative music performance. The latter
places extremely stringent bounds on latency and jitter. The
longer the audio latency between musicians, the harder it is
for them to play synchronously [5]. Time delays as short
as 25 milliseconds are already problematic for professional
ensembles like string quartets.2

It’s the total delay between sound capture and sound
projection which counts. This splits out into (i) acous-
tic (air path) delays, e.g., the distance between an instru-
ment and the capture microphone and between the speakers
and ears; (ii) analog to digital and digital to analog conver-
sion (ADC/DAC) delay, i.e., the time it takes for an analog
source to be transformed into digital and back; (iii) settings
chosen for audio quality and packetization, including au-
dio sampling rate and bit depth resolution, buffer and packet
sizes, and others; (iv) network transmission delays, includ-
ing physical (geographical) distance, transmission delays in-
duced by switches, routers, firewall and network congestion
among others.

The default transport protocol in JackTrip is UDP, a low-
overhead, fast mechanism for transmitting packets (see [9]
for a good description). The application’s own header data
accompanies each audio packet to describe local properties
like audio buffer size, sampling rate, bit depth, number of
channels, a sequence number and a time stamp.

Currently, JackTrip uses Jack [3] as its host audio server.
Jack has several advantages: it runs on Linux and Mac OS
X, it has the ability to make audio connections between
many different audio clients on the same host, and its cur-
rent implementation takes advantage of multi-processor ma-
chines [10].

2Recordings of experiments with theSt. Lawrence String Quartetare
available athttp://ccrma.stanford.edu/groups/soundwire/research/slsq/.

mailto:jcaceres@ccrma.stanford.edu
mailto:cc@ccrma.stanford.edu
http://ccrma.stanford.edu/groups/soundwire/
http://ccrma.stanford.edu/groups/soundwire/research/slsq/

Blocking
UDP Sender Thread

Audio Process Callback
JackAudio Threads

To Peer

Non-

blocking
UDP Receiver Thread

From

Peer

Non-

blocking

Non-

blocking

Audio-Outputs

(N-Channels)

Audio-Inputs

(N-Channels)
Network

Network
Ring
Buffer

Process plug-ins

Ring
Buffer

Figure 1. JackTrip architecture overview

2. JACKTRIP’S MULTI-THREADED
ARCHITECTURE

JackTrip’s multi-threaded design is implemented in C++ us-
ing the Qt library3 and also can take advantage of multi-
core machines. Figure1 shows the multi-threaded architec-
ture of the application. There is one thread which processes
Jack’s audio via a callback function. The other processing
threads in JackTrip are theSender, which wraps audio pack-
ets from the audio thread with the header information into
UDP packets, and theReceiverthat unwraps the packet and
has it ready when the audio process callback needs it.

Inter-thread communication is implemented using ring
(or circular) buffers as shown in Figure1. This is one of
the critical latency-reducing parts of the design. The only
thread which blocks against its input from the ring buffer is
the UDP Sender thread; there’s no need to send audio that
hasn’t been generated. Every time a buffer is available on
the ring buffer, the sender thread immediately sends it as
a UDP packet. Conversely, the receiving ring buffer can-
not block, since local audio must obtain a packet from the
ring buffer when it’s scheduled to—otherwise audio glitches
will be heard. JackTrip maximizes reliability, audio flexi-
bility and minimizes as much as possible peer-to-peer au-
dio delay. Two parameters which affect local audio la-
tency are sampling rate and buffer size. For example, us-
ing a sampling rate of 96 kHz and an audio buffer of 64
frames (or samples), the rate of audio packet delivery is ev-
ery 64/96000·1000= 0.67 milliseconds4.

2.1. Thread Scheduling

Threads in JackTrip are scheduled asreal-timepriority, i.e.,
jack audio and socket threads will take priority over any
other non-critical process. This avoids interruptions during
time-critical tasks.

3http://www.qtsoftware.com/.
4Internal redundancy and other factors can make the actual local latency

approximately the double of this number, but the delivery rate, i.e., the rate
at which packets are sent and received, corresponds to that number.

2.2. Buffering Mechanism

Two types of scheduling problems can occur on the receive
side, illustrated in Figure2:

Overrun condition The receiving ring buffer is full, i.e.,
there is no space to write new buffers coming from the
UDP Receiver thread. This normally happens when
asynchronous clocks drift, e.g., the peer’s clock runs
faster than the local clock.

Under-run condition The receiving ring buffer is empty,
i.e., there are no new packets to read. This is caused
either because there are packets that are delayed or
lost in the network or because the clocks of the two
machines have drifted the other way.

This is different from common streaming applications
which can stop playback (e.g., audio-video playback on
browsers) when they reach an under-run condition, and
won’t have the overflow problem because real-time is not
a concern. Typically, these applications adaptively increase
or reduce their buffer size. In JackTrip, latency needs to
be constant and another method is needed to deal with both
under and over-run conditions.

Ring buffers have areadand awrite pointer (Fig.2). On
initialization, both the read and write pointers are in a “sym-
metric” position. The longer the buffer size, the higher the
latency5. The length of the buffer is a provision for network
jitter; slight variations around this symmetry are produced
by packets not arriving at exactly the same frequency. In an
ideal situation, where both machines have clocks that match
exactly and no packets are lost, the symmetric position will
be maintained on average throughout the connection. The
higher the jitter the longer the ring buffer needs to be to
avoid glitches.

2.3. Buffer Glitches

Primarily as a result of receive buffers not being sized to
accommodate network jitter glitches occur and have to be
dealt with. The application has two different modes that
respond to under-runs (Fig.2):

5This latency can be visualized as the signed “distance” between the
readandwrite pointer.

http://www.qtsoftware.com/

write
position

read
position

write
position

read
position

Overflow Condition

write
position

read
position

No empty slots

to write to

write
position

read
position

Reset pointers
and clear older packets

Under-run Condition

Ring Buffer

Read packets
of zeros

Loop through
the last read
packet

Silent Mode

Wavetable
Mode

No new slots

to read from

Ring Buffer initial

"symmetic"pointer positions

full

packets

empty

packets

Figure 2. Ring Buffers

Silent mode Send a packet of zeros (silence) to the process
callback.

Wavetable mode Re-send the last available packet to the
process callback. This will produce a wavetable syn-
thesizer type of sound when there aren’t new packets
available for some time, since it’s going to loop on the
last one received.

For under-runs, the pointers are not reset because we always
want to be able toread the most recent packet.

To deal with buffer overflows, the ring bufferread
pointer is reset to the symmetric position with respect to
thewrite pointer. Some packets6 will be lost in the process
but the clock drift will be reset to its original position, thus
avoiding another glitch for an extended amount of time.

2.4. Packet Redundancy Algorithm

As an unreliable transport mechanism, UDP has no pro-
visions to notify the sender when or if a packet was suc-
cessfully delivered, or if the receiving order matches the
sender’s. With today’s good network QoS, we generally ex-
perience a very low number of lost or out-of-order packets.
But, since even one misplaced packet will be perceived as
a glitch, JackTrip includes a mechanism to recover (within
certain bounds) lost or unordered packets.

Jacktrip’s redundancy algorithm is used when sufficient
bandwidth is available. The technique is illustrated on
Figure3. The sender bundlesRedunFactorcopies of ev-
ery audio+header packet into a bigger UDP packet (with
RedunFactor∈ Z

+). This is done for every new au-
dio+header buffer, so each UDP packet has an overlap of
RedunFactor−1 buffers, as illustrated in the figure.

6Half of the ring buffer for even buffer sizes, and half minus 1for odd
buffer sizes, to be precise.

p[1]

p[2]

p[3]

p[4]p[5]

p[3] p[2] p[1]
U
D
P
1 To Peer

To Peer

To Peer

From Peer

UDP[3]

From Peer

Lost Packet

ring
buffer

time

time
Receiving end

Sender end

p[4] p[3] p[2]

p[5] p[4] p[3]

p[3] p[2] p[1]

p[5] p[4] p[3]

U
D
P
2

U
D
P
3

U
D
P
1

U
D
P
3

Figure 3. UDP redundancy,RedunFactor= 3

Algorithm 1 Packet redundancy receiving end
For every new UDP packet
CurSeqNum← Packet highest sequence num
if (CurSeqNum−LastSeqNum)≤ RedunFactorthen

NumNewPackets= CurSeqNum−LastSeqNum
else

NumNewPackets= RedunFactor
end if
for i = (NumNewPackets−1) to 0 do

SendP[CurSeqNum− i] to Ring Buffer
end for
LastSeqNum←CurSeqNum

On the receiving end, the Algorithm1 reads a UDP
packet and determines if it has not already received the ex-

tra copies. New copies are sent to the ring buffer, and extra
copies are discarded. Lost packets are recovered as illus-
trated in Figure3.

2.5. Processing Plugins

JackTrip also has the ability to dynamically add plugins into
the audio process callback (Fig.1). One plugin implements
loopback mode, i.e, audio received from a peer is immedi-
ately sent back. This allows a location to listen to its echo
from a remote peer. The aural evaluation of network qual-
ity [6] or the synchronization of music through “feedback
locking” [4] are two practical applications which use this
approach.

Plugins can also be used for “Internet acoustics” or soni-
fication through physical models [8], e.g., a network imple-
mentation of the Karplus-Strong algorithm for strings and
drums synthesis.

3. CONCLUSIONS AND FUTURE WORK

“Broader” broad-band networks have the capacity to sup-
port high-quality audio. JackTrip serves to illustrate some
of the software design decisions for achieving low-latency,
bi-directional audio using these networks. Its particularuses
have different requirements: collaborative music making is
different from, for example, one-way remote studio record-
ing where latency is not the issue but packet loss is. De-
pending on the application, JackTrip allows the user to tune
its configuration, for example trading off some reliability
(allowing for minor glitches) in favor of tighter latency.

At the design stage, the engineer must provide the meth-
ods that support the highest-quality musical performance.
In particular, JackTrip deals with packet loss by providinga
redundancy algorithm, and deals with clock drifts and late
or un-recoverable packets by using a lower-level strategies
in ring buffers that can, e.g., sound like a wavetable synthe-
sizer, thus extending the musical sonority of the moment.
Clock drift between remote WAN machines is still an un-
solved issue and there are presumably new techniques to be
tried in the future, like adaptive re-sampling, packet cross-
fading, and others.

The current work of JackTrip is focused on the appli-
cation layer, but new network projects like OpenFlow [1]
and Dynamic Circuit Network [2] provide the opportunity to
start experimenting with lower layers; it would be possible
to dynamically specify network paths to minimize latency,
or to obtain dedicated bandwidth for a more reliable Quality
of Service (QoS).

4. ACKNOWLEDGMENTS

Fundamental contributors to design and coding have in-
cluded Scott Wilson, Randal Leistikow and Daniel Walling.

At CCRMA, Fernando Lopez-Lezcano and Carr Wilkerson
have provided continuous technical support and advice. Var-
ious individuals have also contributed in testing the soft-
ware during several concerts, in particular Alain Renaud and
Jonas Braasch.

5. REFERENCES

[1] (2008) The OpenFlow Switch Consortium. [Online].
Available:http://www.openflowswitch.org/

[2] (2009) Internet2 Dynamic Circuit Network. [Online].
Available:http://www.internet2.edu/network/dc/

[3] (2009) JACK: Connecting a world of audio. [Online].
Available:http://jackaudio.org/

[4] J.-P. Cáceres, R. Hamilton, D. Iyer, C. Chafe, and
G. Wang, “To the edge with china: Explorations in net-
work performance,” inARTECH 2008: Proceedings
of the 4th International Conference on Digital Arts,
Porto, Portugal, 2008, pp. 61–66.

[5] C. Chafe and M. Gurevich, “Network time delay and
ensemble accuracy: Effects of latency, asymmetry,” in
Proceedings of the AES 117th Convention, San Fran-
cisco, 2004.

[6] C. Chafe and R. Leistikow, “Levels of temporal reso-
lution in sonification of network performance,” inPro-
ceedings of the 2001 International Conference on Au-
ditory Display. Helsinki: ICAD, 2001.

[7] C. Chafe, S. Wilson, R. Leistikow, D. Chisholm, and
G. Scavone, “A simplified approach to high quality
music and sound over IP,” inProceedings of the COST
G-6 Conference on Digital Audio Effects (DAFX-00),
Verona, Italy, Dec. 2000.

[8] C. Chafe, S. Wilson, and D. Walling, “Physical
model synthesis with application to internet acous-
tics,” in Proceedings of the International Conference
on Acoustics, Speech and Signal Processing, Orlando,
2002.

[9] D. E. Comer, Internetworking with TCP/IP, Vol 1,
5th ed. Prentice Hall, Jul. 2005.

[10] S. Letz, Y. Orlarey, and D. Fober, “Jack audio server
for multi-processor machines,” inProceedings of In-
ternational Computer Music Conference, ICMA, Ed.,
Barcelona, 2005, pp. 1–4.

[11] A. Xu and J. R. Cooperstock, “Real-time streaming of
multichannel audio data over Internet,” inProceedings
of the 108th Convention of the Audio Engineering So-
ciety, Paris, 2000, pp. 627–641.

http://www.openflowswitch.org/
http://www.internet2.edu/network/dc/
http://jackaudio.org/

	Abstract
	1 Introduction
	1.1 Peer-to-peer Network Audio Latency

	2 JackTrip's Multi-threaded Architecture
	2.1 Thread Scheduling
	2.2 Buffering Mechanism
	2.3 Buffer Glitches
	2.4 Packet Redundancy Algorithm
	2.5 Processing Plugins

	3 Conclusions and Future Work
	4 Acknowledgments
	5 References

