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Project Repository
https://github.com/Aliaa
Mahgoub/sound-scenes

Introduction
Recognizing sound scenes in realistic soundscapes would 
inform machines about their setting, creating context-
aware machines. 

To do this, we train “listening machines” using audio 
data, which they use to find patterns and learn.

Machines can process these features extracted from data:
• Frequency-based features help machines process 

audio like humans hear sounds at the level of the 
cochlea. 

• Time-based features quantify characteristics of the 
signal’s time-domain plot.
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Model Validation 
Accuracy

Test 
Accuracy

NN (2 layers, Sizes = 
(128,128))

51.4% 51.6%

NN (2 layers, Sizes = 
(16,128))

51.8% 51.5%

NN (1 layer, Sizes = 
512)

51.0% 50.9%

NN (1 layer, Sizes = 2) 40.3% 39.9%

KNN (K=51, RMS & 
ZCR, Uniform)

41.5% 41.3%

KNN (K=221, RMS & 
ZCR, Distance)

40.9% 41.3%

KNN (K=221, SC & SB, 
Distance)

29.7% 29.8%

KNN (K= 221, All 
features, Uniform)

29.7% 29.5%

KNN (K=121, SC, SB, 
& ZC, Uniform)

29.7% 29.3%

Research Questions
1- What combinations of time-based and spectrum

based features will result in the best accuracy?

2- How will the K-Nearest Neighbors classifier
perform compared to a Neural Network classifier?

Hypothesis
Classifiers will perform best with frequency-based 

features because they help machines process audio like 
humans hear sounds.

A Neural Network will perform better than the K-Nearest 
Neighbors classifier because it learns from its errors to 

understand complicated relationships.

Conclusion
• Overall, the performance of the Neural network increased as 

the sum of the sizes of the layers increased but plateaued
quickly at around 50%.

• The 2-hidden-layer Neural Networks with hidden layer sizes 
(16,128) and (128,128) performed the best overall at over 
40% more than chance.

• The K-Nearest Neighbors classifier performed best with a 
combination of the two time-based features, with an 
accuracy of over 40%

Problem Statement
Since we don’t know what features and classification 

systems are best at classifying sound scenes, we can use 
those features to train classification systems and 

compare their performance. 
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Acoustic Scene Classification System

Feature Extraction

Methods: Classifiers & Cross-validation

Neural Network 
(NN)

1. Find the k nearest 
neighbors.

2. Vote for classes.
3. Object is assigned to 

class with majority vote

K=3

Error function
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K-Nearest Neighbors (KNN)
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