

Sound Scene Classification: Comparing the Performance of Spectrum-based and Time-based Features ¹Aliaa Mahgoub, ²Iran Roman & ²Juan P. Bello

¹Brooklyn Technical High School ² New York University

Introduction

Recognizing sound scenes in realistic soundscapes would inform machines about their setting, creating contextaware machines.

To do this, we **train "listening machines"** using audio data, which they use to **find patterns** and learn.

Machines can process these features extracted from data:

- Frequency-based features help machines process audio like humans hear sounds at the level of the cochlea.
- **Time-based features** quantify characteristics of the signal's time-domain plot.

Problem Statement

Since we don't know what features and classification systems are best at classifying sound scenes, we can use those features to train classification systems and compare their performance.

Research Questions

- 1- What **combinations** of time-based and spectrum based features will result in the best **accuracy**?
- 2- How will the K-Nearest Neighbors classifier perform compared to a Neural Network classifier?

Hypothesis

Classifiers will perform best with frequency-based features because they help machines process audio like humans hear sounds.

A Neural Network will perform better than the K-Nearest Neighbors classifier because it learns from its errors to understand complicated relationships.

