Introduction

Recognizing sound scenes in realistic soundscapes would inform machines about their setting, creating contextaware machines

To do this, we train "listening machines" using audio data, which they use to find patterns and learn.

Machines can process these features extracted from data Frequency-based features help machines process audio like humans hear sounds at the level of the cochlea.
Time-based features quantify characteristics of the signal's time-domain plot.

Problem Statement

Since we don't know what features and classification systems are best at classifying sound scenes, we can use those features to train classification systems and compare their performance

Research Questions

1- What combinations of time-based and spectrum based features will result in the best accuracy?
2- How will the K-Nearest Neighbors classifier
perform compared to a Neural Network classifier?

Hypothesis

Classifiers will perform best with frequency-based features because they help machines process audio like humans hear sounds.

A Neural Network will perform better than the K-Nearest Neighbors classifier because it learns from its errors to understand complicated relationships.

Results: Cross-validated Training

Conclusion

Overall, the performance of the Neural network increased as the sum of the sizes of the layers increased but plateaued quickly at around $\mathbf{5 0 \%}$.
The 2-hidden-layer Neural Networks with hidden layer sizes $(16,128)$ and $(128,128)$ performed the best overall at over 40% more than chance

The K-Nearest Neighbors classifier performed best with a combination of the two time-based features, with an
accuracy of over 40\%

References	Project Repository
	https://github.com/Aliaa
隹	Mahgoub/sound-scenes
wright M, Mendez AE, Cramer J, Lostanlen V, Dove G, Wu HH, Salam O, Bello J. SONYC Urban Sound Tagging (SONYC-UST): A multilabel d	Acknowledgements
	STEM

